Все признаки химических реакций. Признаки и условия течения химических реакций. Химическая реакция соединения

Химические реакции, их свойства, типы, условия протекания и прочая, являются одним из краеугольных столпов интересной науки под названием химия. Попробуем же разобрать что такое химическая реакция, и какова ее роль. Итак, химической реакцией в химии принято считать превращение одного либо нескольких веществ, в другие вещества. При этом ядра у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.

Химические реакции в природе и быту

Мы с вами окружены химическими реакциями, более того мы сами их регулярно осуществляем различными бытовыми действиями, когда например, зажигаем спичку. Особенно много химических реакций сами того не подозревая (а может и подозревая) делают повара, когда готовят еду.

Разумеется, и в природных условиях проходит множество химических реакций: извержение вулкана, листвы и деревьев, да что там говорить, практически любой биологический процесс можно отнести к примерам химических реакций.

Типы химических реакций

Все химические реакции можно условно разделить на простые и сложные. Простые химические реакции, в свою очередь, разделяются на:

  • реакции соединения,
  • реакции разложения,
  • реакции замещения,
  • реакции обмена.

Химическая реакция соединения

По весьма меткому определению великого химика Д. И. Менделеева реакция соединения имеет место быть когда «их двух веществ происходит одно». Примером химической реакции соединения может быть нагревание порошков железа и серы, при которой из них образуется сульфид железа — Fe+S=FeS. Другим ярким примеров этой реакции является горение простых веществ, таких как сера или фосфор на воздухе (пожалуй, подобную реакцию можно также назвать тепловой химической реакцией).

Химическая реакция разложения

Тут все просто, реакция разложения является противоположностью реакции соединения. При ней из одного вещества получается два или более веществ. Простым примером химической реакции разложения может быть реакция разложение мела, в ходе которой из собственно мела образуется негашеная известь и углекислый газ.

Химическая реакция замещения

Реакция замещения осуществляется при взаимодействии простого вещества со сложным. Приведем пример химической реакции замещения: если опустить стальной гвоздь в раствор с медным купоросом, то в ходе этого простого химического опыта мы получим железный купорос (железо вытеснит медь из соли). Уравнение такой химической реакции будет выглядеть так:

Fe+CuSO 4 → FeSO 4 +Cu

Химическая реакция обмена

Реакции обмена проходят исключительно между сложными химическими веществами, в ходе которых они меняются своими частями. Очень много таких реакций имеют место быть в различных растворах. Нейтрализация кислоты желчью – вот хороший пример химической реакции обмена.

NaOH+HCl→ NaCl+Н 2 О

Так выглядит химическое уравнение этой реакции, при ней ион водорода из соединения HCl обменивается ионом натрия из соединения NaOH. Следствием этой химической реакции является образование раствора поваренной соли.

Признаки химических реакций

По признакам протекания химических реакций можно судить прошла ли химическая реакция между реагентами или нет. Приведем примеры признаков химических реакций:

  • Изменение цвета (светлое железо, к примеру, во влажном воздухе покрывается бурым налетом, как результат химической реакции взаимодействия железа и ).
  • Выпадение осадка (если вдруг через известковый раствор пропустить углекислый газ, то получим выпадение белого нерастворимого осадка карбоната кальция).
  • Выделение газа (если Вы капнете на пищевую соду лимонной кислотой, то получите выделение углекислого газа).
  • Образование слабодиссоциированных веществ (все реакции, в результате которых образуется вода).
  • Свечение раствора (примером тут могут служить реакции, происходящие с раствором люминола, излучающего при химических реакциях свет).

В целом, трудно выделить какие признаки химических реакций являются основными, для разных веществ и разных реакций характерны свои признаки.

Как определить признак химической реакции

Определить признак химической реакции можно визуально (при изменении цвета, свечении), или по результатам этой самой реакции.

Скорость химической реакции

Под скоростью химической реакции обычно понимают изменение количества одного из реагирующих веществ за единицу времени. Притом, скорость химической реакции всегда положительная величина. В 1865 году химиком Н. Н. Бекетовым был сформулирован закон действия масс гласящий, что «скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам».

К факторам скорости химической реакции можно отнести:

  • природу реагирующих веществ,
  • наличие катализатора,
  • температуру,
  • давление,
  • площадь поверхности реагирующих веществ.

Все они имеют самое прямое влияние на скорость протекания химической реакции.

Равновесие химической реакции

Химическим равновесием называют такое состояние химической системы, при котором протекает несколько химических реакций и скорости в каждой паре прямой и обратной реакции равны между собой. Таким образом, выделяется константа равновесия химической реакции – это та величина, которая определяет для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия можно определить направление протекания химической реакции.

Условия возникновения химических реакций

Чтобы положить начало химических реакций, необходимо для этого создать соответствующие условия:

  • приведение веществ в тесное соприкосновение.
  • нагревание веществ до определенной температуры (температура химической реакции должна быть подходящей).

Тепловой эффект химической реакции

Так называют изменение внутренней энергии системы как результат протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:

  • единственно возможной работой при этом есть только лишь работа против внешнего давления.
  • исходные вещества и продукты, полученные в результате химической реакции, имеют одинаковую температуру.

Химические реакции, видео

И в завершение интересно видео про самые удивительные химические реакции.

«Химические реакции. Признаки и условия их протекания»

Барышова И.В. ГОУ СОШ №1980. г Москва.

Задачи обучения. Сформировать знания о признаках и условиях протекания химических реакций, на этой основе усовершенствовать умение отличать физические процессы от химических.

Задачи развития. Совершенствовать умение объяснять зависимость протекания химических реакций от внешних условий.

Эксперимент. Плавление парафина, обугливание сахара, горение лучины, взаимодействие медного купороса с аммиаком, взаимодействие сульфата меди (II) и гидроксида натрия, взаимодействие растворов карбоната натрия и соляной кислоты, взаимодействие тиосульфата натрия с серной кислотой. Составление моделей молекул.

Планируемые результаты обучения. Учащиеся должны уметь на примерах конкретных химических реакций указывать условия их возникновения и дальнейшего протекания, а также признаки реакций.

Планируемые результаты развития. Учащиеся должны уметь объяснять связь между условиями и возможностью протекания химических реакций.

Ход урока.

Все изменения, происходящие с веществами в природе, называются явлениями . В природе происходят биологические, химические и физические явления. Но сегодня мы будем сравнивать химические и физические явления

В процессе демонстрации опытов (дробление кусочка сахара и обугливание сахара) выясняем сущность происходящих явлений и составляем таблицу.

Приведите свои примеры физических и химических явлений.

Химические явления называются химическими реакциями. Давайте смоделируем на атомно-молекулярном уровне химическую реакцию разложения воды.

Изготовление молекул воды и демонстрация химического явления (работа с моделями).

Для закрепления знаний проводим беседу с учащимися и отвечаем на вопросы.

Закружилась листва золотая
В розоватой воде на пруду.
Словно бабочек лёгкая стая с
Замираньем летит на звезду…

(С. Есенин).

Вопросы учителя:

1. О каком явлении в жизни растений говорится в стихах С. Есенина?
2. К физическим или химическим явлениям относится листопад?
3. С чем связано изменение цвета листьев деревьев осенью, какие явления физические или химические происходят при этом?
4. Какой пигмент обуславливает зелёную окраску листьев растений?

Для развития умений учащихся по самоконтролю знаний проводим тестированный контроль.

1. К химическим явлениям (в отличие от физических) относятся:


  1. Сгорание бензина в двигателе автомобиля

  2. Скисание молока

  3. Таяние снега

  4. Образование инея на деревьях.
2. Какие из природных явлений сопровождаются химическими реакциями?

  1. Выпадение дождя

  2. Извержение вулканов

  3. Гниение растительных остатков

  4. Ледоход на реке.
3. Какие из признаков характерны для химических реакций?

  1. Образование осадка

  2. Изменение агрегатного состояния

  3. Выделение газа

  4. Измельчение вещества.
4. К физическим явлениям относятся:

  1. Горение угля

  2. Приготовление порошка из куска мела

  3. Образование ржавчины

  4. Свечение вольфрамовой нити в лампочке.
Далее, используя знания учащихся о химических реакциях, на основе проделанных демонстрационных опытов (взаимодействие тиосульфата натрия с серной кислотой при разной температуре) составляем таблицу «Условия возникновения и протекания химических реакций»

Для чего нам необходимо знать условия возникновения и условия протекания химических реакций?

Для того чтобы контролировать протекание химических реакций, иногда химическую реакцию необходимо прекратить, например, при пожаре мы стремимся прекратить реакцию горения.

О реакции горения мы будем говорить на следующем урок.

Завершает урок рефлексионо-оценочный этап.

Показ занимательного опыта «Вулкан»

В ходе этого урока научились работать с химической посудой, создавать модели молекул, различать химические и физические явления, знать условия возникновения и протекания реакций, делать выводы.

Из предыдущих разделов мы узнали (приблизительно, конечно), какие бывают вещества и как они устроены. Теперь нам нужно познакомиться с самым важным в химии — с химическими реакциями: узнать, какие они бывают, почему одни вещества реагируют, а другие нет и почему реакции идут так, а не иначе. Когда появилась химия как наука (а произошло это приблизительно в XVII — XVIII вв.), химики имели дело с небольшим числом известных элементов и со сравнительно: небольшим числом веществ.

Тем не менее они очень слабо представляли себе, что же происходит в ходе химической реакции, когда одни вещества превращаются в другие. Химия в те времена представляла собой набор эмпирических правил, то есть правил, найденных в результате многочисленных экспериментов, проводимых часто без всякого заранее намеченного плана.

И в головах химиков зачастую царил хаос — как и сейчас у многих школьников! Видный американский физикохимик Джордж Хэммон по этому поводу высказался так: «В 1950-х годах учебники по органической химии стали такими большими, что их разделили на две части.

И вы должны были запомнить каждое соединение, каждую реакцию. И самые лучшие студенты всё это выучивали.

Это было мучительно, но это требовалось — запомнить названия всех этих соединений, всех этих реакций…

» На самом деле в современной химии царит порядок; химики знают, что уже точно установлено, что требует проверки, а что пока ещё им неизвестно. Вот главное из давно и точно установленного: в химии строжайше выполняется закон о сохранении числа атомов.

В химических процессах одни элементы не могут превращаться в другие, и любая химическая реакция представляет собой просто «перестановку атомов»: атомы, входившие в состав исходных веществ (их часто называют реагентами), оказываются в составе продуктов реакции. При этом число атомов каждого элемента остаётся строго постоянным.

Современный химик никогда не будет пытаться провести «невозможные» превращения, например получить золото из ртути или свинца, как это пытались сделать алхимики. Или получить оксид фтора F2O7, в котором этот элемент был бы семивалентным, несмотря на то, что на валентной оболочке его атома находятся семь электронов, и в этом отношении фтор аналогичен хлору, оксид которого С12О7 известен.

И только в шутку химик может писать «уравнения» таких реакций, как А1 + Сu = Аu + С1 или Si + Nb = Sb + Ni (попробуйте сами, пользуясь периодической таблицей, составить ещё несколько таких «алхимических превращений»). Во все времена, и сейчас тоже, главный вопрос для химиков — как получить вещество с нужными свойствами.

Но прежде, чем на него ответить, необходимо выяснить, что произойдёт, если прореагируют такие-то вещества.

И хорошо бы также заранее знать, с какой скоростью пойдёт конкретная реакция в данных условиях.

Слишком медленно — плохо, долго ждать, а слишком быстро — тоже может быть плохо: как бы взрыва не было… Известно, что многие вещества могут спокойно сосуществовать, вовсе не реагируя друг с другом.

Начинающие изучать химию иногда задают вопрос, ставящий в тупик преподавателя: а что получится, если из всех этих баночек с реактивами достать понемногу и всё перемешать? Но даже если такой странный эксперимент проделать, тут же возникнет следующий вопрос: как узнать, произошла ли при смешении тех или иных веществ химическая реакция или никакой реакции не было?

Химики давно выделили характерные признаки химической реакции. Обычно считается, что протекание реакции характеризуется выделением тепла (а иногда и света, а также звука), образованием осадка, выделением газообразных веществ.

Вот конкретные примеры. Если насыпать на железный лист горку растёртого в порошок дихромата аммония и поджечь её сверху наблюдается очень красивая реакция: (NH4)2Cr2О7 = Сг2О3 + N2 + 4Н2О.

При этом из красной горки вверх летят искры, и во все стороны, как лава, выделяется в большом количестве зелёный порошок оксида хрома.

Недаром такой эксперимент получил название «Извержение вулкана». В этой реакции выделяются и свет, и теплота, и газы (азот и пары воды).

Всё это характерные признаки химической реакции.

Всем известно, что теплота и свет сопровождают реакции горения.

Но и здесь есть исключения.

Например, если поджечь струю водорода, его пламя будет совершенно невидимым. Правда, для этого водород должен выделяться из металлической трубки, так как стеклянная быстро нагреется на конце и окрасит пламя в жёлтый цвет (свечение натрия).

Чтобы убедиться в том, что выходящий из трубки водород действительно горит, к её выходному отверстию подносят холодный предмет, и тогда на нём осаждаются капельки воды, образовавшиеся в реакции горения: 2Н2 + О2 = 2Н2О.

Известны и реакции с выделением света, но без горения. Такое явление называется хемилюминесценцией.

Светиться могут гнилушки, светляки, некоторые морские одноклеточные организмы. Светятся и многие морские животные, обитающие как на поверхности моря, так и в его глубине.

Это примеры биолюминесценции — свечения в живых организмах. Во всех этих случаях энергия химической реакции выделяется в виде света.

В 1669 году алхимик из Гамбурга Хенниг Бранд случайно открыл белый фосфор по его свечению в темноте. Впоследствии химики выяснили, что белый фосфор легко испаряется и светятся его пары, когда они реагируют с кислородом воздуха.

Свет выделяется и в реакции некоторых органических веществ с перекисью водорода. При этом наблюдается настолько яркая хемилюминесценция, что её можно видеть даже при дневном освещении.

Это явление используют, например, для производства игрушек и украшений. Их делают в виде прозрачных пластмассовых трубочек, в которых запаяна ампула с перекисью водорода, а также раствор сложного вещества — дифенилового эфира щавелевой кислоты и флуоресцентный краситель.

Если ампулу раздавить, эфир начнёт окисляться, энергия этой реакции передаётся на краситель, который и светится. Его цвет может быть разным — оранжевым, голубым, зелёным — в зависимости от красителя.

Чем быстрее идёт реакция окисления, тем ярче свечение, но тем быстрее оно прекращается.

Подбором компонентов получают яркое (можно читать в темноте) свечение, которое затухает в течение примерно 12 часов — для карнавала или дискотеки этого вполне достаточно. А вот примеры реакций, сопровождающихся выделением большого количества теплоты.

Если облить порошок оксида кальция (негашёной извести) водой, то в результате реакции образуется гашёная известь (гидроксид кальция): СаО + Н2О = Са(ОН)2. В этой реакции выделяется так много теплоты, что закипает вода в стакане, поставленном в негашёную известь до опыта. Ещё один пример взят из биографии американского физика Роберта Вуда.

Как-то он повёз кататься в санях свою невесту, и у неё замёрзли руки.

Тогда Вуд достал припасённую бутылку, заполненную на три четверти водой, и налил в неё из флакона концентрированную серную кислоту. «Через десять секунд бутылка так нагрелась, — записал будущий знаменитый физик в своём дневнике, — что её нельзя было держать в руках.

Когда она начинала остывать, я добавлял ещё кислоты, а когда кислота перестала поднимать температуру — достал банку с палочками едкого натра и понемногу подкладывал их. Таким способом бутылка была нагрета почти до кипения всю поездку».

Реакция серной кислоты с едким натром (старое название гидроксида натрия) идёт так: H2SО4 + 2NaOH = Na2SО4 + 2Н2О.

В этой реакции действительно выделяется очень много теплоты.

Какая же реакция происходит при простом разбавлении серной кислоты? По этому поводу давно был спор.

Многие химики считали, что никакой химической реакции в этом случае нет. Другие же, в том числе и Д. И. Менделеев, полагали, что всё же имеет место химическое взаимодействие серной кислоты с водой. Сейчас принято считать подобные процессы физико-химическими.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.