Характерные химические свойства щелочных металлов. Какие неметаллы реагируют с щелочью, а какие – нет? Щелочь плюс неметалл

Это элементы I группы периодической системы: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr); очень мягкие, пластичные, легкоплавкие и легкие, как правило, серебристо-белого цвета; химически очень активны; бурно реагируют с водой, образуя щёлочи (откуда название).

Все щелочные металлы чрезвычайно активны, во всех химических реакциях проявляют восстановительные свойства, отдают свой единственный валентный электрон, превращаясь в положительно заряженный катион, проявляют единственную степень окисления +1.

Восстановительная способность увеличивается в ряду ––Li–Na–K–Rb–Cs.

Все соединения щелочных металлов имеют ионный характер.

Практически все соли растворимы в воде.

Низкие температуры плавления,

Малые значения плотностей,

Мягкие, режутся ножом

Вследствие своей активности щелочные металлы хранят под слоем керосина, чтобы преградить доступ воздуха и влаги. Литий очень легкий и в керосине всплывает на поверхность, поэтому его хранят под слоем вазелином.

Химические свойства щелочных металлов

1. Щелочные металлы активно взаимодействуют с водой:

2Na + 2H 2 O → 2NaOH + H 2 ­

2Li + 2H 2 O → 2LiOH + H 2 ­

2. Реакция щелочных металлов с кислородом:

4Li + O 2 → 2Li 2 O (оксид лития)

2Na + O 2 → Na 2 O 2 (пероксид натрия)

K + O 2 → KO 2 (надпероксид калия)

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

3. В реакциях щелочных металлов с другими неметаллами образуются бинарные соединения:

2Li + Cl 2 → 2LiCl (галогениды)

2Na + S → Na 2 S (сульфиды)

2Na + H 2 → 2NaH (гидриды)

6Li + N 2 → 2Li 3 N (нитриды)

2Li + 2C → Li 2 C 2 (карбиды)

4. Реакция щелочных металлов с кислотами

(проводят редко, идет конкурирующая реакция с водой):

2Na + 2HCl → 2NaCl + H 2 ­

5. Взаимодействие щелочных металлов с аммиаком

(образуется амид натрия):

2Li + 2NH 3 = 2LiNH 2 + H 2

6. Взаимодействие щелочных металлов со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2 ;

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2 ;

7. Качественная реакция на катионы щелочных металлов — окрашивание пламени в следующие цвета:

Li + – карминово-красный

Na + – желтый

K + , Rb + и Cs + – фиолетовый

Получение щелочных металлов

Металлические литий, натрий и калий получают электролизом расплава солей (хлоридов), а рубидий и цезий – восстановлением в вакууме при нагревании их хлоридов кальцием: 2CsCl+Ca=2Cs+CaCl 2
В небольших масштабах используется также вакуум-термическое получение натрия и калия:

2NaCl+CaC 2 =2Na+CaCl 2 +2C;
4KCl+4CaO+Si=4K+2CaCl 2 +Ca 2 SiO 4 .

Активные щелочные металлы выделяются в вакуум-термических процессах благодаря своей высокой летучести (их пары удаляются из зоны реакции).


Особенности химических свойств s-элементов I группы и их физиологическое действие

Электронная конфигурация атома лития 1s 2 2s 1 . У него самый большой во 2-м периоде атомный радиус, что облегчает отрыв валентного электрона и возникновение иона Li + со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий ‑ типичный металлический элемент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и наименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагонали от Li элемент II группы ‑ магний. В растворах ион Li + сильно сольватирован; его окружают несколько десятков молекул воды. Литий по величине энергии сольватации - присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов.

Малый размер иона Li + , высокий заряд ядра и всего два электрона создают условия для возникновения вокруг этой частицы довольно значительного поля положительного заряда, поэтому в растворах к нему притягивается значительное число молекул полярных растворителей и его координационное число велико, металл способен образовывать значительное число литийорганических соединений.

Натрием начинается 3-й период, поэтому у него на внешнем уровне всего 1е — , занимающий 3s-орбиталь. Радиус атома Na - наибольший в 3-м периоде. Эти две особенности определяют характер элемента. Его электронная конфигурация 1s 2 2s 2 2p 6 3s 1 . Единственная степень окисления натрия +1. Электроотрицательность его очень мала, поэтому в соединениях натрий присутствует только в виде положительно заряженного иона и придает химической связи ионный характер. По размеру ион Na + значительно больше, чем Li + , и сольватация его не так велика. Однако в растворе в свободном виде он не существует.

Физиологическое значение ионов К + и Na + связано с их различной адсорбируемостью на поверхности компонентов, входящих в состав земной коры. Соединения натрия лишь незначительно подвержены адсорбции, в то время как соединения калия прочно удерживаются глиной и другими веществами. Мембраны клеток, являясь поверхностью раздела клетка ‑ среда, проницаемы для ионов К + , вследствие чего внутриклеточная концентрация К + значительно выше, чем ионов Na + . В то же время в плазме крови концентрация Na + превышает содержание в ней калия. С этим обстоятельством связывают возникновение мембранного потенциала клеток. Ионы К + и Na + ‑ одни из основных компонентов жидкой фазы организма. Их соотношение с ионами Са 2+ строго определенно, а его нарушение приводит к патологии. Введение ионов Na+ в организм не оказывает заметного вредного влияния. Повышение же содержания ионов К + вредно, но в обычных условиях рост его концентрации никогда не достигает опасных величин. Влияние ионов Rb + , Cs + , Li + еще недостаточно изучено.

Из различных поражений, связанных с применением соединений щелочных металлов, чаще всего встречаются ожоги растворами гидроксидов. Действие щелочей связано с растворением в них белков кожи и образованием щелочных альбуминатов. Щелочь вновь выделяется в результате их гидролиза и действует на более глубокие слои организма, вызывая появление язв. Ногти под влиянием щелочей становятся тусклыми и ломкими. Поражение глаз, даже очень разбавленными растворами щелочей, сопровождается не только поверхностными разрушениями, но нарушениями более глубоких участков глаза (радужной оболочки) и приводит к слепоте. При гидролизе амидов щелочных металлов одновременно образуется щелочь и аммиак, вызывающие трахеобронхит фибринозного типа и воспаление легких.

Калий был получен Г. Дэви практически одновременно с натрием в 1807 г. при электролизе влажного гидроксида калия. От названия этого соединения ‑ «едкое кали» и получил свое наименование элемент. Свойства калия заметно отличаются от свойств натрия, что обусловлено различием величин радиусов их атомов и ионов. В соединениях калия связь более ионная, а в виде иона К + он обладает меньшим поляризующим действием, чем натрий, из-за больших размеров. Природная смесь состоит из трех изотопов 39 К, 40 К, 41 К. Один из них 40 Крадиоактивен и определенная доля радиоактивности минералов и почвы связана с присутствием этого изотопа. Его период полураспада велик ‑ 1,32 млрд. лет. Определить присутствие калия в образце довольно легко: пары металла и его соединения окрашивают пламя в фиолетово-красный цвет. Спектр элемента довольно прост и доказывает наличие 1е — на 4s-орбитали. Изучение его послужило одним из оснований для нахождения общих закономерностей в строении спектров.

В 1861 г. при исследовании соли минеральных источников спектральным анализом Роберт Бунзен обнаружил новый элемент. Его наличие доказывалось темно-красными линиями в спектре, которых не давали другие элементы. По цвету этих линий элемент и был назван рубидием (rubidus-темно-красный). В 1863 г. Р. Бунзен получил этот металл и в чистом виде восстановлением тартрата рубидия (виннокислой соли) сажей. Особенностью элемента является легкая возбудимость его атомов. Электронная эмиссия у него появляется под действием красных лучей видимого спектра. Это связано с небольшой разницей в энергиях атомных 4d и 5s-орбиталей. Из всех щелочных элементов, имеющих стабильные изотопы, рубидию (как и цезию) принадлежит один из самых больших атомных радиусов и маленький потенциал ионизации. Такие параметры определяют характер элемента: высокую электроположительность, чрезвычайную химическую активность, низкую температуру плавления (39 0 C) и малую устойчивость к внешним воздействиям.

Открытие цезия, как и рубидия, связано со спектральным анализом. В 1860 г. Р.Бунзен обнаружил две яркие голубые линии в спектре, не принадлежащие ни одному известному к тому времени элементу. Отсюда произошло и название «цезиус» (caesius), что значит небесно-голубой. Это последний элемент подгруппы щелочных металлов, который ещё встречается в измеримых количествах. Наибольший атомный радиус и наименьшие первые потенциалы ионизации определяют характер и поведение этого элемента. Он обладает ярко выраженной электроположительностью и ярко выраженными металлическими качествами. Стремление отдать внешний 6s-электрон приводит к тому, что все его реакции протекают исключительно бурно. Небольшая разница в энергиях атомных 5d- и 6s-орбиталей обусловливает легкую возбудимость атомов. Электронная эмиссия у цезия наблюдается под действием невидимых инфракрасных лучей (тепловых). Указанная особенность структуры атома определяет хорошую электрическую проводимость тока. Все это делает цезий незаменимым в электронных приборах. В последнее время все больше внимания уделяется цезиевой плазме как топливу будущего и в связи с решением проблемы термоядерного синтеза.

На воздухе литий активно реагирует не только с кислородом, но и с азотом и покрывается пленкой, состоящей из Li 3 N (до 75%) и Li 2 O. Остальные щелочные металлы образуют пероксиды (Na 2 O 2) и надпероксиды (K 2 O 4 или KO 2).

Перечисленные вещества реагируют с водой:

Li 3 N + 3 H 2 O = 3 LiOH + NH 3 ;

Na 2 O 2 + 2 H 2 O = 2 NaOH + H 2 O 2 ;

K 2 O 4 + 2 H 2 O = 2 KOH + H 2 O 2 + O 2 .

Для регенерации воздуха на подводных лодках и космических кораблях, в изолирующих противогазах и дыхательных аппаратах боевых пловцов (подводных диверсантов) использовалась смесь «оксон»:

Na 2 O 2 +CO 2 =Na 2 CO 3 +0,5O 2 ;

K 2 O 4 + CO 2 = K 2 CO 3 + 1,5 O 2 .

В настоящее время это стандартная начинка регенерирующих патронов изолирующих противогазов для пожарных.
Щелочные металлы реагируют при нагревании с водородом, образуя гидриды:

Гидрид лития используется как сильный восстановитель.

Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:

SiO 2 +2NaOH=Na 2 SiO 3 +H 2 O.

Гидроксиды натрия и калия не отщепляют воду при нагревании вплоть до температур их кипения (более 1300 0 С). Некоторые соединения натрия называют содами :

а) кальцинированная сода, безводная сода, бельевая сода или просто сода – карбонат натрия Na 2 CO 3 ;
б) кристаллическая сода – кристаллогидрат карбоната натрия Na 2 CO 3 . 10H 2 O;
в) двууглекислая или питьевая – гидрокарбонат натрия NaHCO 3 ;
г) гидроксид натрия NaOH называют каустической содой или каустиком.

Нам надо знать, что из неметаллов, упоминаемых в школьном курсе:

C, N 2 , O 2 – не реагируют с щелочами

Si, S, P, Cl 2 , Br 2 , I 2 , F 2 – реагируют:

Si + 2KOH + H 2 O = K 2 SiO 3 + 2H 2 ,
3S + 6KOH = 2K 2 S + K 2 SO 3 + 3H 2 O,
Cl 2 + 2KOH (холодный)= KCl + KClO + H 2 O,
3Cl 2 + 6KOH (горячий) = 5KCl + KClO 3 + 3H 2 O

(аналогично бром и иод)

4P + 3NaOH + 3H 2 O = 3NaH 2 PO 2 + PH 3

Органическая химия

Тривиальные названия

Надо знать, какие органические вещества соответствуют названиям:

изопрен, дивинил, винилацетилен, толуол, ксилол, стирол, кумол, этиленгликоль, глицерин, формальдегид, уксусный альдегид, пропионовый альдегид, ацетон, первые шесть предельных одноосновных кислот (муравьиная, уксусная, пропионовая, масляная, валериановая, капроновая), акриловая кислота, стеариновая кислота, пальмитиновая кислота, олеиновая кислота, линолевая кислота, щавелевая кислота, бензойная кислота, анилин, глицин, аланин. Не путайте пропионовую кислоту с пропеновой!! Соли важнейших кислот: муравьиной – формиаты, уксусной – ацетаты, пропионовой – пропионаты, масляной – бутираты, щавелевой – оксалаты. Радикал –CH=CH 2 называется винил!!

Заодно и некоторые неорганические тривиальные названия:

Поваренная соль (NaCl), негашеная известь (CaO), гашеная известь (Ca(OH) 2), известковая вода (раствор Ca(OH) 2), известняк (CaCO 3), кварц (он же кремнезем или диоксид кремния – SiO 2), углекислый газ (CO 2), угарный газ (CO), сернистый газ (SO 2), бурый газ (NO 2), питьевая или пищевая сода (NaHCO 3), кальцинированная сода (Na 2 CO 3), аммиак (NH 3), фосфин (PH 3), силан (SiH 4), пирит (FeS 2), олеум (раствор SO 3 в концентрированной H 2 SO 4), медный купорос (CuSO 4 ∙5H 2 O).

Некоторые редкие реакции

1) Образование винилацетилена :

2) Реакция прямого окисления этилена в уксусный альдегид :

Эта реакция коварна тем, что мы хорошо знаем, как ацетилен превращается в альдегид (реакция Кучерова), а если в цепочке встретится превращение этилен → альдегид, то это может нас поставить в тупик. Так вот, имеется в виду эта реакция!

3) Реакция прямого окисления бутана в уксусную кислоту:

Эта реакция лежит в основе промышленного производства уксусной кислоты.

4) Реакция Лебедева:

Отличия фенолов от спиртов

Огромное количество ошибок в таких заданиях!!

1) Следует помнить, что фенолы более кислотны, чем спирты (связь О-Н в них более полярна). Поэтому спирты не реагируют с щелочью, а фенолы реагируют и с щелочью, и некоторыми солями (карбонаты, гидрокарбонаты).

Например:

Задача 10.1

Какие из этих веществ реагируют с литием:

а) этиленгликоль, б) метанол, в) фенол, г) кумол, д) глицерин.

Задача 10.2

Какие из этих веществ реагируют с гидроксидом калия:

а) этиленгликоль, б) стирол, в) фенол, г) этанол, д) глицерин.

Задача 10.3

Какие из этих веществ реагируют с гидрокарбонатом цезия:

а) этиленгликоль, б) толуол, в) пропанол-1, г) фенол, д) глицерин.

2) Следует помнить, что спирты реагируют с галогеноводородами (эта реакция идет по связи С-О), а фенолы нет (в них связь С-О из-за эффекта сопряжения малоподвижна).

Дисахариды

Основные дисахариды: сахароза, лактоза и мальтоза имеют одинаковую формулу C 12 H 22 O 11 .

О них следует помнить:

1) что они способны гидролизоваться на те моносахариды, из которых состоят: сахароза – на глюкозу и фруктозу, лактоза – на глюкозу и галактозу, мальтоза – на две глюкозы.

2) что лактоза и мальтоза обладают альдегидной функцией, то есть являются восстанавливающими сахарами (в частности, дают реакции «серебряного» и «медного» зеркала), а сахароза – невосстанавливающий дисахарид, не имеет альдегидной функции.

Механизмы реакций

Будем надеяться, что достаточно следующих знаний:

1) для алканов (в том числе в боковых цепях аренов, если эти цепи предельные) характерны реакции свободнорадикального замещения (с галогенами), которые идут по радикальному механизму (инициирование цепи – образование свободных радикалов, развитие цепи, обрыв цепи на стенках сосуда или при соударении радикалов);

2) для алкенов, алкинов, аренов характерны реакции электрофильного присоединения , которые идут по ионному механизму (через образование пи-комплекса и карбокатиона ).

Особенности бензола

1. Бензол в отличие от других аренов не окисляется перманганатом калия.

2. Бензол и его гомологи способны вступать в реакцию присоединения с водородом. Но только бензол способен также вступать в реакцию присоединения с хлором (только бензол и только с хлором!). При этом все арены способны вступать в реакцию замещения с галогенами.

Реакция Зинина

Восстановление нитробензола (или аналогичных ему соединений) в анилин (или другие ароматические амины). Эта реакция в одном из ее видов почти обязательно встретится!

Вариант 1 – восстановление молекулярным водородом:

C 6 H 5 NO 2 + 3H 2 → C 6 H 5 NH 2 +2H 2 O

Вариант 2 – восстановление водородом, полученным при реакции железа (цинка) с соляной кислотой:

C 6 H 5 NO 2 + 3Fe + 7HCl → C 6 H 5 NH 3 Cl +3FeCl 2 + 2H 2 O

Вариант 3 – восстановление водородом, полученным при реакции алюминия с щелочью:

C 6 H 5 NO 2 + 2Al + 2NaOH + 4H 2 O → C 6 H 5 NH 2 +2Na

Свойства аминов

Почему-то свойства аминов запоминаются хуже всего. Возможно, это связано с тем, что амины изучаются в курсе органической химии последними, и их свойства не удается повторить, изучая другие классы веществ. Поэтому рецепт такой: просто выучить все свойства аминов, аминокислот и белков.

Разделение оснований на группы по различным признакам представлено в таблице 11.

Таблица 11
Классификация оснований

Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску . Например, гидроксид кальция Са(ОН) 2 белого цвета , гидроксид меди (II) Сu(ОН) 2 голубого цвета , гидроксид никеля (II) Ni(OH) 2 зелёного цвета , гидроксид железа (III) Fe(OH) 3 красно-бурого цвета и т. д.

Водный раствор аммиака NH 3 Н 2 O, в отличие от других оснований, содержит не катионы металла, а сложный однозарядный катион аммония NH - 4 и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:

Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.

Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксид-ионы ОН - , которые и обусловливают ряд общих свойств : мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.

Типичные реакции оснований

Первая реакция (универсальная) была рассмотрена в § 38.

Лабораторный опыт № 23
Взаимодействие щелочей с кислотами

    Запишите два молекулярных уравнения реакций, сущность которых выражается следующим ионным уравнением:

    H + + ОН - = Н 2 O.

    Проведите реакции, уравнения которых вы составили. Вспомните, какие вещества (кроме кислоты и щёлочи) необходимы для наблюдения за этими химическими реакциями.

Вторая реакция протекает между щелочами и оксидами неметаллов, которым соответствуют кислоты, например,

Соответствует

При взаимодействии оксидов с основаниями образуются соли соответствующих кислот и вода:

Рис. 141.
Взаимодействие щёлочи с оксидом неметалла

Лабораторный опыт № 24
Взаимодействие щелочей с оксидами неметаллов

Повторите опыт, который вы проделывали раньше. В пробирку налейте 2-3 мл прозрачного раствора известковой воды.

Поместите в неё соломинку для сока, которая выполняет роль газоотводной трубки. Осторожно пропускайте через раствор выдыхаемый воздух. Что наблюдаете?

Запишите молекулярное и ионное уравнения реакции.

Рис. 142.
Взаимодействие щелочей с солями:
а - с образованием осадка; б - с образованием газа

Третья реакция является типичной реакцией ионного обмена и протекает только в том случае, если в результате образуется осадок или выделяется газ, например:

Лабораторный опыт № 25
Взаимодействие щелочей с солями

    В трёх пробирках слейте попарно по 1-2 мл растворов веществ: 1-я пробирка - гидроксида натрия и хлорида аммония; 2-я пробирка - гидроксида калия и сульфата железа (III); 3-я пробирка - гидроксида натрия и хлорида бария.

    Нагрейте содержимое 1-й пробирки и определите по запаху один из продуктов реакции.

    Сформулируйте вывод о возможности взаимодействия щелочей с солями.

Нерастворимые основания разлагаются при нагревании на оксид металла и воду, что нехарактерно для щелочей, например:

Fe(OH) 2 = FeO + Н 2 O.

Лабораторный опыт № 26
Получение и свойства нерастворимых оснований

В две пробирки налейте по 1 мл раствора сульфата или хлорида меди (II). В каждую пробирку добавьте по 3-4 капли раствора гидроксида натрия. Опишите образовавшийся гидроксид меди (II).

Примечание . Оставьте пробирки с полученным гидроксидом меди (II) для проведения следующих опытов.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции».

Добавьте в одну из пробирок с полученным в предыдущем опыте гидроксидом меди (II) 1-2 мл соляной кислоты. Что наблюдаете?

Используя пипетку, поместите 1-2 капли полученного раствора на стеклянную или фарфоровую пластину и, используя тигельные щипцы, осторожно выпарьте его. Рассмотрите образующиеся кристаллы. Отметьте их цвет.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции», «участие катализатора» и «обратимость химической реакции ».

Нагрейте одну из пробирок с полученным ранее или выданным учителем гидроксидом меди () (рис. 143). Что наблюдаете?

Рис. 143.
Разложение гидроксида меди (II) при нагревании

Составьте уравнение проведённой реакции, укажите условие её протекания и тип реакции по признакам «число и состав исходных веществ и продуктов реакции», «выделение или поглощение теплоты» и «обратимость химической реакции».

Ключевые слова и словосочетания

  1. Классификация оснований.
  2. Типичные свойства оснований: взаимодействие их с кислотами, оксидами неметаллов, солями.
  3. Типичное свойство нерастворимых оснований: разложение при нагревании.
  4. Условия протекания типичных реакций оснований.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором.
Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

2 Mg + SiO 2 = 2 MgO + Si (при недостатке магния)

2 Mg + SiO 2 = 2 MgO + Mg 2 Si (при избытке магния)

4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2 H 3 PO 4 = Mg (H 2 PO 4) 2 + H 2 .

Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.

Однако, из этого правила бывают исключения:

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3 Na + AlCl 3 = 3 NaCl + Al . Этот процесс экзотермический, его определяет энтальпийный фактор.

Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV ) и кислород, кислород и оксид азота будут окислять железо:

10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8 Al + 3 Fe 3 O 4 = 4 Al 2 O 3 + 9 Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3 Rb 2 O = 6 Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

6 KOH + 3 Cl 2 = KClO 3 + 5 KCl + 3 H 2 O (в горячем растворе)

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

1) неметалл – восстановитель (водород, углерод):

СО 2 + С = 2СО;

2NO 2 + 4H 2 = 4H 2 O + N 2 ;

SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2 C = CO 2 + Si С

2) неметалл – окислитель (кислород, озон, галогены):

2С O + O 2 = 2СО 2 .

С O + Cl 2 = СО Cl 2 .

2 NO + O 2 = 2 N О 2 .

10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2 Mg (OH) 2 + CO 2 = (MgOH) 2 CO 3 + H 2 O .

14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2 NaHSO 3

15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba (HSO 4) 2 .

19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

Рассмотрим примеры:

2 FeCl 3 + 3 Na 2 CO 3 = Fe 2 (CO 3 ) 3 + 6 NaCl (1)

Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 (CO 3 ) 3 + 3 H 2 O = 2 Fe (OH) 3 + 3 CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III ) и карбоната натрия: 2 FeCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Fe (OH) 3 + 3 CO 2 + 6 NaCl

CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

Подчеркнутая соль не существует из-за необратимого гидролиза:

2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II ) и карбоната натрия:

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

  • Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения
  • Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
  • Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
  • Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
  • Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Общее представление о методе молекулярных орбиталей.
  • Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
  • Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
  • 11.Металлические связи. Металлические связи как предельный случай делокализации валентных электронных орбиталей. Кристаллические решетки металлов.
  • 12. Межмолекулярные связи. Взаимодействия Ван-дер-Ваальса – дисперсионное, диполь-дипольное, индуктивное). Водородная связь.
  • 13. Основные классы неорганических соединений. Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.
  • 15. Кислоты.Бескислородные и кислородные кислоты. Номенклатура (название кислот). Химические свойства кислот.
  • 16. Соли как продукты взаимодействия кислот и оснований. Типы солей: средние (нормальные), кислые, основные, оксосоли, двойные, комплексные соли. Номенклатура солей. Химические свойства солей.
  • 17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
  • 18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
  • 20. Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.
  • 22. Влияние температуры на скорость химической реакции. Энергия активации.
  • 23. Химическое равновесие. Константа равновесия, ее зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
  • 1)Кислота – сильный электролит.
  • 36. А) Стандартный водородный электрод. Кислородный электрод.
  • 37. Уравнение Нернста для расчета электродных потенциалов электродных систем различных типов. Уравнение Нернста для водородного и кислородного электродов
  • 3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
  • I – величина тока
  • 49. Кислотно-основной метод титрования.Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе
  • 13. Основные классы неорганических соединений . Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.

    Оксиды – соединения элемента с кислородом.

    Оксиды не образующие кислот, оснований и солей при обычных условиях, называются не солеобразующими.

    Солеобразующие оксиды подразделяются на кислотные, основные и амфотерные (обладающие двойственными свойствами) . Неметаллы образуют только кислотные оксиды, металлы – все остальные и некоторые кислотные.

    Основные оксиды - это сложные химические вещества, относящиеся к окислам, которые образуют соли при химической реакции с кислотами или кислотными оксидами и не реагируют с основаниями или основными оксидами.

    Свойства:

    1. Взаимодействие с водой:

    Взаимодействие с водой с образованием основания (или щёлочи)

    CaO+H2O = Ca(OH)2 (известная реакция гашения извести, при этом выделяется большое количества тепла!)

    2. Взаимодействие с кислотами:

    Взаимодействие с кислотой с образованием соли и воды (раствор соли в воде)

    CaO+H2SO4 = CaSO4+ H2O (Кристаллы этого вещества CaSO4 известны всем под названием "гипс").

    3. Взаимодействие с кислотными оксидами: образование соли

    CaO+CO2=CaCO3 (Это вещество известно всем - обычный мел!)

    Кислотные оксиды - это сложные химические вещества, относящиеся к окислам, которые образуют соли при химическом взаимодействии с основаниями или основными оксидами и не взаимодействуют с кислотными оксидами.

    Свойства:

    Химическая реакция с водой CO 2 +H 2 O=H 2 CO 3 - это вещество - угольная кислота - одна из слабых кислот, её добавляют в газированную воду для "пузырьков" газа.

    Реакция с щелочами (основаниями): CO 2 +2NaOH=Na 2 CO 3 +H 2 O- кальцинированная сода или стиральная сода.

    Реакция с основными оксидами: CO 2 +MgO=MgCO 3 - получившая соль - карбонат магния - ещё называется "горькая соль".

    Амфотерные оксиды - это сложные химические вещества, также относящиеся к окислам, которые образуют соли при химическом взаимодействии и с кислотами (или кислотными оксидами) и основаниями (или основными оксидами). Наиболее частое применение слово "амфотерный" в нашем случае относится к оксидам металлов.

    Свойства:

    Химические свойства амфотерных оксидов уникальны тем, что они могут вступать в химические реакции, соответствующие как основаниями так и с кислотами. Например:

    Реакция с кислотным оксидом:

    ZnO+H2CO3 = ZnCO3 + H2O - Образовавшееся вещество - раствор соли "карбоната цинка" в воде.

    Реакция с основаниями:

    ZnO+2NaOH=Na2ZnO2+H2O - полученное вещество - двойная соль натрия и цинка.

    14. Основания.Номенклатура оснований. Химические свойства оснований. Амфотерные основания, реакции их взаимодействия с кислотами и щелочами.

    Основаниями называются вещества, в которых атомы металла связаны с гидрокси-группами.

    Если вещество содержит гидрокси-группы (ОН), которые могут отщепляться (подобно отдельному "атому") в реакциях с другими веществами, то такое вещество является основанием.

    Свойства:

    Взаимодействие с неметаллами:

    при нормальных условиях гидроксиды не взаимодействуют с большинством неметаллов, исключение - взаимодействие щелочей с хлором

    Взаимодействие с кислотными оксидами с образованием солей: 2NaOH + SO 2 = Na 2 SO 3 + H 2 O

    Взаимодействие с кислотами -реакция нейтрализации:

    с образованием средних солей: 3NaOH + H3PO4 = Na3PO4 + 3H2O

    условие образования средней соли - избыток щелочи;

    с образованием кислых солей: NaOH + H3PO4 = NaH2PO4 + H2O

    условие образования кислой соли - избыток кислоты;

    с образованием основных солей: Cu(OH)2 + HCl = Cu(OH)Cl + H2O

    условие образования основной соли - избыток основания.

    С солями основания реагируют при выпадении осадка в результате реакции, выделения газа или образования малодиссоциирующего вещества.

    Амфотерными называются гидроксиды, которые проявляют и основные и кислотные свойства в зависимости от условий, т.е. растворяются в кислотах и щелочах.

    Ко всем свойствам оснований добавляются взаимодействие с основаниями.

    Щелочными металлами (ЩМ) называют все элементы IA группы таблицы Менделеева, т.е. литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr.

    У атомов ЩМ на внешнем электронном уровне находится только один электрон на s- подуровне, легко отрывающийся при протекании химических реакций. При этом из нейтрального атома ЩМ образуется положительно заряженная частица – катион с зарядом +1:

    М 0 – 1 e → М +1

    Семейство ЩМ является наиболее активным среди прочих групп металлов в связи с чем в природе обнаружить их в свободной форме, т.е. в виде простых веществ невозможно.

    Простые вещества щелочные металлы являются крайне сильными восстановителями.

    Взаимодействие щелочных металлов с неметаллами

    с кислородом

    Щелочные металлы реагируют с кислородом уже при комнатной температуре, в связи с чем их требуется хранить под слоем какого-либо углеводородного растворителя, такого как, например, керосина.

    Взаимодействие ЩМ с кислородом приводит к разным продуктам. С образованием оксида, с киcлородом реагирует только литий:

    4Li + O 2 = 2Li 2 O

    Натрий в аналогичной ситуации образует с кислородом пероксид натрия Na 2 O 2:

    2Na + O 2 = Na 2 O 2 ,

    а калий, рубидий и цезий – преимущественно надпероксиды (супероксиды), общей формулы MeO 2:

    Rb + O 2 = RbO 2

    с галогенами

    Щелочные металлы активно реагируют с галогенами, образуя галогениды щелочных металлов, имеющих ионное строение:

    2Li + Br 2 = 2LiBr бромид лития

    2Na + I 2 = 2NaI иодид натрия

    2K + Cl 2 = 2KCl хлорид калия

    с азотом

    Литий реагирует с азотом уже при обычной температуре, с остальными же ЩМ азот реагирует при нагревании. Во всех случаях образуются нитриды щелочных металлов:

    6Li + N 2 = 2Li 3 N нитрид лития

    6K + N 2 = 2K 3 N нитрид калия

    с фосфором

    Щелочные металлы реагируют с фосфором при нагревании, образуя фосфиды:

    3Na + P = Na 3 Р фосфид натрия

    3K + P = K 3 Р фосфид калия

    с водородом

    Нагревание щелочных металлов в атмосфере водорода приводит к образованию гидридов щелочных металлов, содержащих водород в редкой степени окисления – минус 1:

    Н 2 + 2K = 2KН -1 гидрид калия

    Н 2 + 2Rb = 2RbН гидрид рубидия

    с серой

    Взаимодействие ЩМ с серой протекает при нагревании с образованием сульфидов:

    S + 2K = K 2 S сульфид калия

    S + 2Na = Na 2 S сульфид натрия

    Взаимодействие щелочных металлов со сложными веществами

    с водой

    Все ЩМ активно реагируют с водой с образованием газообразного водорода и щелочи, из-за чего данные металлы и получили соответствующее название:

    2HOH + 2Na = 2NaOH + H 2

    2K + 2HOH = 2KOH + H 2

    Литий реагирует с водой довольно спокойно, натрий и калий самовоспламеняются в процессе реакции, а рубидий, цезий и франций реагируют с водой с мощным взрывом.

    с галогенпроизводными углеводородов (реакция Вюрца):

    2Na + 2C 2 H 5 Cl → 2NaCl + C 4 H 10

    2Na + 2C 6 H 5 Br → 2NaBr + C 6 H 5 –C 6 H 5

    со спиртами и фенолами

    ЩМ реагируют со спиртами и фенолами, замещая водород в гидроксильной группе органического вещества:

    2CH 3 OH + 2К = 2CH 3 OК + H 2

    метилат калия

    2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2

    фенолят натрия


    Соль19 Соль


    1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

    2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором. Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

    3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

    2Mg + SiO 2 = 2MgO + Si (при недостатке магния)

    2Mg + SiO 2 = 2MgO + Mg 2 Si (при избытке магния)

    4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

    Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

    Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2H 3 PO 4 = Mg(H 2 PO 4) 2 + H 2 .

    Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

    5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.



    Однако, из этого правила бывают исключения:

    2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

    2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

    В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3Na + AlCl 3 = 3NaCl + Al. Этот процесс экзотермический, его определяет энтальпийный фактор.

    Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV) и кислород, кислород и оксид азота будут окислять железо:

    10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

    6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3Rb 2 O = 6Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

    7. Неметалл + основный оксид. Здесь возможно два варианта: 1) неметалл – восстановитель (водород, углерод): CuO + H 2 = Cu + H 2 O; 2) неметалл – окислитель (кислород, озон, галогены): 4FeO + O 2 = 2Fe 2 O 3 .

    8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

    2KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

    6KOH + 3Cl 2 = KClO 3 + 5KCl + 3H 2 O (в горячем растворе)

    6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

    2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

    3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

    9. Неметалл+ кислотный оксид. Здесь также возможно два варианта:

    1) неметалл – восстановитель (водород, углерод):

    СО 2 + С = 2СО;

    2NO 2 + 4H 2 = 4H 2 O + N 2 ;

    SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2C = CO 2 + SiС

    2) неметалл – окислитель (кислород, озон, галогены):

    2СO + O 2 = 2СО 2 .

    СO + Cl 2 = СОCl 2 .

    2NO + O 2 = 2NО 2 .

    10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

    11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

    12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

    13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

    Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

    Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2Mg(OH) 2 + CO 2 = (MgOH) 2 CO 3 + H 2 O.

    14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

    Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

    Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

    Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

    В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2NaHSO 3

    15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

    16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

    17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

    18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

    Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

    Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba(HSO 4) 2 .

    19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

    Особо обратим внимание на те случаи, когда образуется соль, которая в таблице растворимости показана прочерком. Здесь возможны 2 варианта:

    1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

    Рассмотрим примеры:

    2FeCl 3 + 3Na 2 CO 3 = Fe 2 (CO 3) 3 + 6NaCl (1)

    Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

    H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 (CO 3) 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 (2)

    Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III) и карбоната натрия: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 + 6NaCl

    CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

    Подчеркнутая соль не существует из-за необратимого гидролиза:

    2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

    Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II) и карбоната натрия:

    2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

    2) Соль не существует за счёт внутримолекулярного окисления-восстановления , таким солям относятся Fe 2 S 3 , FeI 3 , CuI 2 . Как только они получаются, тут же разлагаются: Fe 2 S 3 = 2FeS+ S; 2FeI 3 = 2FeI 2 +I 2 ; 2CuI 2 = 2CuI + I 2

    Например; FeCl 3 + 3KI = FeI 3 + 3KCl (1),

    но вместо FeI 3 нужно записать продукты его разложения: FeI 2 +I 2.

    Тогда получится: 2FeCl 3 + 6KI = 2FeI 2 +I 2 + 6KCl

    Это не единственный вариант записи данной реакции, если йодид был в недостатке, то может получиться йод и хлорид железа (II):

    2FeCl 3 + 2KI = 2FeCl 2 +I 2 + 2KCl

    В предложенной схеме ничего не сказано про амфотерные соединения и соответствующие им простые вещества. На них мы обратим особое внимание. Итак, амфотерный оксид в данной схеме может занять место и кислотного и основного оксидов, амфотерный гидроксид – место кислоты и основания. Нужно помнить, что, выступая в качестве кислотных, амфотерные оксиды и гидроксиды образуют в безводной среде обычные соли, а в растворах – комплексные соли:

    Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O (сплавление)

    Al 2 O 3 + 2NaOH + 3H 2 O = 2Na (в растворе)

    Простые вещества, соответствующие амфотерным оксидам и гидроксидам, реагируют с растворами щелочей с образованием комплексных солей и выделением водорода: 2Al + 2NaOH + 6H 2 O = 2Na + 3Н 2

    ЗАДАНИЕ

    Обсудите возможность взаимодействия… Это значит, что Вы должны решить:

    1) возможна ли реакция;

    2) если возможна, то при каких условиях (в растворе, в расплаве, при нагревании и т.п.), если не возможна, то почему;

    3) могут ли получиться разные продукты при разных (каких) условиях.

    После этого Вы должны записать все возможные реакции.

    Например: 1. обсудите возможность взаимодействия магния с нитратом калия.

    1) Реакция возможна

    2) Она может происходить в расплаве (при нагревании)

    3) В расплаве реакция возможна, так как нитрат разлагается с выделением кислорода, который окисляет магний.

    KNO 3 + Mg = KNO 2 + MgO

    2. обсудите возможность взаимодействия серной кислоты с хлоридом натрия.

    1) Реакция возможна

    2) Она может происходит между концентрированной кислотой и кристаллической солью

    3) В качестве продукта может получаться сульфат натрия и гидросульфат натрия (в избытке кислоты, при нагревании)

    H 2 SO 4 + NaCl = NaHSO 4 + HCl

    H 2 SO 4 + 2NaCl = Na 2 SO 4 + 2HCl

    Обсудите возможность протекания реакции между:

    1. Ортофосфорной кислотой и гидроксидом калия;

    2. Оксидом цинка и гидроксидом натрия;

    3. Сульфитом калия и сульфатом железа (III);

    4. Хлоридом меди (II) и йодидом калия;

    5. Карбонатом кальция и оксидом алюминия;

    6. Углекислым газа и карбонатом натрия;

    7. Хлоридом железа (III) и сероводородом;

    8. Магнием и сернистым газом;

    9. Дихроматом калия и серной кислотой;

    10. Натрием и серой.

    Проведем небольшой анализ примеров С2