В каких веществах имеется пи связь. Ковалентные связи. Пи- и сигма- связи. Основные объекты био.химии


Существуют два типа ковалентной связи: сигма- и пи-связи. сигма-связью называется одинарная ковалентная связь, образованная при перекрывании АО по прямой (оси), соединяющей ядра двух связываемых атомов с максимумом перекрывания на этой прямой. сигма-связь может возникать при перекрывании любых (s-, р-гибридных) АО. У органогенов (углерод, азот, кислород, сера) в образовании сигма-связей могут принимать участие гибридные орбитали, обеспечивающие более эффективное перекрывание. Кроме осевого возможен еще один вид перекрывания - боковое перекрывание р-АО, приводящее к образованию пи-связи. пи-связью называется связь, образованная при боковом перекрывании негибридизованных р-АО с максимумом перекрывания по обе стороны от прямой, соединяющей ядра атомов. Часто встречающиеся в органических соединениях кратные связи являются сочетанием сигма- и пи-связей; двойная - одной сигма- и одной пи-, тройная - одной сигма- и двух пи-связей.

Энергия связи - это энергия, выделяющаяся при образовании связи или необходимая для разъединения двух связанных атомов. Она служит мерой прочности связи: чем больше энергия, тем связь прочнее.

Длина связи - это расстояние между центрами связанных атомов. Двойная связь короче одинарной, а тройная - короче двойной. Для связей между атомами углерода, находящихся в разном состоянии гибридизации, характерна общая закономерность: с увеличением доли s-орбитали в гибридной орбитали уменьшается длина связи. Например, в ряду соединений пропан СН3-СН2-СН3, пропен СН3-СН=СН2, пропин СН3-С-=СН длина связи СН3-С соответственно равна 0,154, 0,150 и 0,146 нм.

В химии широко используется представление о гибридных орбиталях атома углерода и других элементов. Понятие о гибридизации как способе описания перестройки орбиталей необходимо в тех случаях, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых связей. Постулируется, что различные атомные орбитали, имеющие близкие значения уровня энергии, взаимодействуют между собой, образуя гибридные орбитали с одинаковой формой и энергией. Гибридные орбитали за счет большего перекрывания образуют более прочные связи по сравнению с негибридизованными орбиталями.

Тип гибридизации определяет направленность гибридных АО в пространстве и, следовательно, геометрию молекул. В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находиться в одном из трех состояний гибридизации. sp3-Гибридизация. В результате sp3-гибридизации атом углерода из основного состояния 1s2-2s2-2р2 за счет перемещения электрона с 2s- на 2р-орбиталь переходит в возбужденное состояние 1s2-2s1-2р3. При смешении четырех внешних АО возбужденного атома углерода (одной 2s- и трех 2р-орбиталей) возникают четыре равноценные sр-гибридные орбитали. Они имеют форму объемной восьмерки, одна из лопастей которой значительно больше другой. Вследствие взаимного отталкивания sp3-гибридные АО направлены в пространстве к вершинам тетраэдра и углы между ними равны 109,5° (наиболее выгодное расположение). Каждая гибридная орбиталь в атоме заполняется одним электроном. Атом углерода в состоянии sр3-гибридизации имеет электронную конфигурацию 1s2(2sр3)4.

Такое состояние гибридизации характерно для атомов углерода в насыщенных углеводородах (алканах) и соответственно в алкильных радикалах их производных. sp2-Гибридизация. В результате sp2-гибридизации за счет смешения одной 2s- и двух 2р-АО возбужденного атома углерода образуются три равноценные sp2-гибридные орбитали, располагающиеся в одной плоскости под углом 120’. Негибридизованная 2р-АО находится в перпендикулярной плоскости. Атом углерода в состоянии sр2-гибридизации имеет электронную конфигурацию 1s2-(2sр2)3-2р1. Такой атом углерода характерен для ненасыщенных углеводородов (алкенов), а также некоторых функциональных групп, например карбонильной, карбоксильной и др. sр-Гибридизация. В результате sр-гибридизации за счет смешения одной 2s- и одной 2р-орбиталей возбужденного атома углерода образуются две равноценные sр-гибридные АО, расположенные линейно под углом 180°. Оставшиеся негибридизованными две 2р-АО располагаются во взаимно перпендикулярных плоскостях. Атом углерода в состоянии sр-гибридизации имеет электронную конфигурацию 1s2-(2sр)2-2p2. Такой атом встречается в соединениях, имеющих тройную связь, например в алкинах, нитрилах. В гибридизованном состоянии могут находиться и атомы других элементов. Например, атом азота в ионе аммония NH4+ и соответственно алкиламмония RNН3+ находится в состоянии sр3-гибридизации; в пирроле и пиридине - sр2-гибридизаыии; в нитрилах - sр-гибридизации.



РАЗДЕЛ И. ОБЩАЯ ХИМИЯ

3. Химическая связь

3.5. Сигма - и пи-связь

Пространственно различают два типа связи - сигма - и пи-связь.

1. Сигма-связь (σ-связь) - простой (одинарный) ковалентная связь, образующаяся перекрыванием электронных облаков по линии, соединяющей атомы. Связь характеризуется осевой симметрией:

В образовании σ-связи могут принимать участие как обычные, так и гібридизовані орбитали.

2. Пи-связь (π-связь). Если у атома после образования σ-связи остались неспаренные электроны, он может использовать их на образование второго типа связи, который называют π-связью. Рассмотрим его механизм на примере образования молекулы кислорода O 2 .

Электронная формула атома Кислорода - 8 O 1 s 2 2 s 2 2 p 2 , или

Два неспаренные р-электроны в атоме Кислорода могут образовать две совместные ковалентные пары с электронами второго атома Кислорода:

Одна пара идет на образование σ-связи:

Другая, перпендикулярная к ней, - на образование π-связи:

Еще одна p -орбиталь (р в), как и s -орбиталь, на которой находятся по две спаренные электроны, участия в связи не берут и не обобществляются.

Аналогичным образом при образовании органических соединений (алкенов и алкадієнів) после sp 2 -гибридизации у каждого из двух атомов Углерода (между которыми образуется связь) остается по одной негібридизованій р-орбитали.

которые размещаются в плоскости, которая является перпендикулярной к оси соединения атомов Карбона:


В сумме σ - и π-связи дают двойную связь.

Тройная связь образуется аналогично и состоит из одной σ-связи (р х) и двух я-связей, которые образованы двумя взаимноперпендикулярными парами p -орбиталей (р у, p z ):

Пример: образование молекулы азота N 2 .

Электронная формула атома Азота- 7 N 1s 2 2s 2 2 p 3 или Три p -электроны в атоме Азота является неспареними и могут образовать три совместные ковалентные пары с электронами второго атома Азота:

В результате образования трех общих электронных пар N≡N каждый атом Азота приобретает устойчивую электронную конфигурацию инертного элемента 2 s 2 2 p 6 (октет электронов).

Тройная связь возникает и при образовании алкінів (в органической химии). В результате s г-гибридизации внешней электронной оболочки атома Углерода образуется две s р-орбитали, расположенные по оси 0Х. Одна из них идет на формирование в-связи с другим атомом Углерода (вторая - на формирование σ-связи с атомом Водорода). А две не гібридизовані р-орбитали (р у, p z ) размещаются перпендикулярно друг к другу и к оси соединения атомов (0Х).

С помощью π-связи формируется молекула бензену и других аренов. Длина связи (ароматического, «полуторного», сказывается ) 1 является промежуточной между длиной простого (0,154 нм) и двойной (0,134 нм) связи и составляет 0,140 нм. Все шесть атомов Углерода имеют общую π-электронное облако, плотность которой локализована над и под плоскостью ароматического ядра и равномерно распределена (делокалізована) между всеми атомами Углерода. По современным представлениям она имеет форму тороида:


1 Под длиной связи понимают расстояние между центрами ядер атомов Углерода, участвующих в связи.


Основные объекты био.химии.

Объектами изучения биоорганической химии являются белки и пептиды, нуклеиновые кислоты, углеводы, липиды, биополимеры, алкалоиды, терпеноиды, витамины, антибиотики, гормоны, токсины, а также синтетические регуляторы биологических процессов: лекарственные препараты, пестициды и др.

Изомерия органических соединений, ее виды. Характеристика видов изомерии, примеры.

Различают два вида изомерии: структурную и пространственную (т.е. стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Например: молекулярной формуле С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан. С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы

Межклассовая изомерия- изомерия веществ, принадлежащих к разным классам органических соединений.

Современная классификация и номенклатура органических соединений.

В настоящее время широко используется систематическая номенклатура- IUPAC- международная единая химическая номенклатура. Правила ИЮПАК основываются на несколько систем:

1) радикально-функциональная (в основе названия лежит название функц-й группы),

2) соединительная (названия составляют из нескольких равноправных частей),

3) заместительная (основой названия служит углеводородный фрагмент).

Ковалентные связи. Пи- и сигма- связи.

Ковалентная связь являетсся основным типом связи в органических соединениях.

Это связь, образованная перекрытием пары валентных электронных облаков.

Пи-связь- это ковалентная связь, образующаяся путем перекрывания р-атомных орбиталей.

Сигма-связь- это ковалентная связь, образующаяся при перекрывании s-атомных орбиталей.

Если между атомами в молекуле образуются как s-, так и р-связи, то образуется кратная (двойная или тройная) связь.

6. Современные представления о структуре органических соединений. Понятие «химическое строение», «конфигурация», «конформация», их определение. Роль структуры в проявлении биологической активности.

В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, лежащая в основе современных представлений о структуре орг. соединений,которая состоит из следующих основных положений:

1.В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.

2.Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.

3.Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.

4.Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.

5.Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.

Понятие "химическое строение" включает представление об определенном порядке соединения атомов в молекуле и об их химическом взаимодействии, изменяющем свойства атомов.

Представления о механизме образования химической связи на примере молекулы водорода распространяются и на другие молекулы. Теория химической связи, созданная на этой основе, получила название метода валентных связей (МВС) .

Основные положения:

1) ковалентная связь образуется в результате перекрывания двух электронных облаков с противоположно направленными спинами, причем образованное общее электронное облако принадлежит двум атомам;

2) ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака. Степень перекрывания электронных облаков зависит от их размеров и плотности;

3) образование молекулы сопровождается сжатием электронных облаков и уменьшением размеров молекулы по сравнению с размерами атомов;

4) в образовании связи принимают участие s- и p-электроны внешнего энергетического уровня и d-электроны предвнешнего энергетического уровня.

В молекуле хлора каждый его атом имеет завершенный внешний уровень из восьми электронов s 2 p 6 , причем два из них (электронная пара) в одинаковой степени принадлежит обоим атомам. Перекрывание электронных облаков при образовании молекулы показано на рисунке

Схема образования химической связи в молекулах хлора Cl 2 (а) и хлороводорода HCl (б)

Химическая связь, для которой линия, соединяющая атомные ядра, является осью симметрии связывающего электронного облака, называется сигма (σ)-связью . Она возникает при «лобовом» перекрывании атомных орбиталей. Связи при перекрывании s-s-орбиталей в молекуле Н 2 ; р-р-орбиталей в молекуле Cl 2 и s-p-орбиталей в молекуле НСl являются сигма связями. Возможно «боковое» перекрывание атомных орбиталей. При перекрывании р-электронных облаков, ориентированных перпендикулярно оси связи, т.е. по оси у- и z-осям, образуются две области перекрывания, расположенные по обе стороны от этой оси.

Такая ковалентная связь называется пи (p)-связью . Перекрывание электронных облаков при образовании π-связи меньше. Кроме того, области перекрывания лежат дальше от ядер, чем при образовании σ-связи. Вследствие этих причин π-связь обладает меньшей прочностью по сравнению с σ-связью. Поэтому энергия двойной связи меньше удвоенной энергии одинарной связи, которая всегда является σ-связью. Кроме того, σ-связь имеет осевую, цилиндрическую симметрию и представляет собой тело вращения вокруг линии, соединяющей атомные ядра. π-Связь, наоборот, не обладает цилиндрической симметрией.

Одинарная связь всегда является чистой или гибридной σ-связью. Двойная же связь состоит из одной σ- и одной π-связей, расположенных перпендикулярно друг относительно друга. σ-Связь прочнее π-связи. В соединениях с кратными связями обязательно присутствует одна σ-связь и одна или две π-связи.

Основные объекты био.химии.

Объектами изучения

Различают два вида изомерии: структурную и пространственную (т.е. стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

В настоящее время широко используется систематическая номенклатура- IUPAC- международная единая химическая номенклатура. Правила ИЮПАК основываются на несколько систем:

Ковалентные связи. Пи- и сигма- связи.

Ковалентная связь

6. Современные представления о структуре органических соединений. Понятие «химическое строение», «конфигурация», «конформация», их определение. Роль структуры в проявлении биологической активности.

5.Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.

Конфигурация

Конформация

Поиск на сайте:

Ковалентные связи. Пи- и сигма- связи.

Основные объекты био.химии.

Объектами изучения биоорганической химии являются белки и пептиды, нуклеиновые кислоты, углеводы, липиды, биополимеры, алкалоиды, терпеноиды, витамины, антибиотики, гормоны, токсины, а также синтетические регуляторы биологических процессов: лекарственные препараты, пестициды и др.

Изомерия органических соединений, ее виды. Характеристика видов изомерии, примеры.

Различают два вида изомерии: структурную и пространственную (т.е.

стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Например: молекулярной формуле С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан. С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы

Межклассовая изомерия- изомерия веществ, принадлежащих к разным классам органических соединений.

Современная классификация и номенклатура органических соединений.

В настоящее время широко используется систематическая номенклатура- IUPAC- международная единая химическая номенклатура.

Правила ИЮПАК основываются на несколько систем:

1) радикально-функциональная (в основе названия лежит название функц-й группы),

2) соединительная (названия составляют из нескольких равноправных частей),

3) заместительная (основой названия служит углеводородный фрагмент).

Ковалентные связи.

Пи- и сигма- связи.

Ковалентная связь являетсся основным типом связи в органических соединениях.

Это связь, образованная перекрытием пары валентных электронных облаков.

Пи-связь- это ковалентная связь, образующаяся путем перекрывания р-атомных орбиталей.

Сигма-связь- это ковалентная связь, образующаяся при перекрывании s-атомных орбиталей.

Если между атомами в молекуле образуются как s-, так и р-связи, то образуется кратная (двойная или тройная) связь.

Современные представления о структуре органических соединений. Понятие «химическое строение», «конфигурация», «конформация», их определение. Роль структуры в проявлении биологической активности.

В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, лежащая в основе современных представлений о структуре орг. соединений,которая состоит из следующих основных положений:

1.В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.

2.Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.

3.Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.

4.Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.

5.Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е.

от того, с какими атомами других элементов они соединены.

Понятие "химическое строение" включает представление об определенном порядке соединения атомов в молекуле и об их химическом взаимодействии, изменяющем свойства атомов.

Конфигурация - относительное пространственное расположение атомов или групп атомов в молекуле химического соединения.

Конформация - пространственное расположение атомов в молекуле определенной конфигурации, обусловленное поворотом вокруг одной или нескольких одинарных сигма-связей

Поиск на сайте:

Сигма связь -ковалентная связь образованная при перекрывании атомных s-электронных облаков, происходит вблизи прямой, соединяющей ядра взаимодействующих атомов (т.е. вблизи оси связи)
В образовании сигма-связи могут принимать участие p-электронные облака, ориентированные вдоль оси связи. в молекуле HF ковалентная сигма-связь возникает вследствие перекрывание 1s-электронного облака атома водорода и 2p-электронного облака атома фтора.

Химическая связь в молекуле F2 тоже сигма связь, она образована 2p-элект. облаками двух атомов фтора.

Сигма -связи -прочные, одинарные и простые связи

Пи-связь — ковалентная связь, при взаимодействии p-электронных облаков, ориентированных перпендикулярно оси связи, образуются не одна, а две области перекрывания, расположенные по обе стороны от этой связи.

Примеры:

в молекуле N2 атомы азота связаны в молекуле тремя ковалентными связями, но связи неравноценны одна из них сигма, две другие пи-связи.

вывод о неравноценности связей в молекуле подтверждается тем, что энергия их разрыва различна; пи-связь является непрочной

| Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

  1. II. Междисциплинарные связи
  2. III Земли промышленности, энергетики, транспорта, связи и иного специального назначения
  3. Text G. (A) Основные характеристики каналов связи
  4. XVIII в. в европейской и мировой истории.

    Россия и Европа: новые взаимосвязи и различия

  5. Административные правонарушения, связанные с увольнением работников в связи с коллективным трудовым спором и объявлением забастовки
  6. Алкоголизм. Групповая психотерапия А-зависимых необходима им в связи с эмоциональной изоляцией больных, приводящей к поверхностным и манипулятивным отношениям с
  7. Анализ поведения затрат и взаимосвязи затрат, оборота и прибыли.

    Обоснование безубыточности продаж товаров. Расчёт порога рентабельности (критической точки продаж)

  8. Анализ связи закона спроса с моделью поведения потребителя
  9. Аналитическая геометрия на плоскости. Установление связи между алгеброй и геометрией было, по существу, революцией в математике
  10. АНАЛОГИЯ.

    Изучая свойства, признаки, связи предметов и явлений реальной действительности, мы не можем познать их сразу

  11. Архитектура сетей связи следующего поколения
  12. Библиографический список.

    1. Дмитриев С.Н. Электронное учебное пособие “Системы спутниковой связи”

РАЗДЕЛ И. ОБЩАЯ ХИМИЯ

3. Химическая связь

3.5. Сигма — и пи-связь

Пространственно различают два типа связи — сигма — и пи-связь.

1. Сигма-связь (σ-связь) — простой (одинарный) ковалентная связь, образующаяся перекрыванием электронных облаков по линии, соединяющей атомы.

Связь характеризуется осевой симметрией:

В образовании σ-связи могут принимать участие как обычные, так и гібридизовані орбитали.

Пи-связь (π-связь). Если у атома после образования σ-связи остались неспаренные электроны, он может использовать их на образование второго типа связи, который называют π-связью. Рассмотрим его механизм на примере образования молекулы кислородаO2.

Электронная формула атома Кислорода -8O1s22s22p2, или

Два неспаренные р-электроны в атоме Кислорода могут образовать две совместные ковалентные пары с электронами второго атома Кислорода:

Одна пара идет на образование σ-связи:

Другая, перпендикулярная к ней, — на образование π-связи:

Еще однаp-орбиталь (рв), как иs-орбиталь, на которой находятся по две спаренные электроны, участия в связи не берут и не обобществляются.

Аналогичным образом при образовании органических соединений (алкенов и алкадієнів) послеsp2-гибридизации у каждого из двух атомов Углерода (между которыми образуется связь) остается по одной негібридизованій р-орбитали.

которые размещаются в плоскости, которая является перпендикулярной к оси соединения атомов Карбона:

В сумме σ — и π-связи дают двойную связь.

Тройная связь образуется аналогично и состоит из одной σ-связи (рх) и двух я-связей, которые образованы двумя взаимноперпендикулярными парамиp-орбиталей (ру,pz):

Пример: образование молекулы азотаN2.

Электронная формула атома Азота-7N 1s22s22p3илиТриp-электроны в атоме Азота является неспареними и могут образовать три совместные ковалентные пары с электронами второго атома Азота:

В результате образования трех общих электронных парN≡Nкаждый атом Азота приобретает устойчивую электронную конфигурацию инертного элемента 2s22p6(октет электронов).

Тройная связь возникает и при образовании алкінів (в органической химии).

В результатеsг-гибридизации внешней электронной оболочки атома Углерода образуется двеsр-орбитали, расположенные по оси 0Х. Одна из них идет на формирование в-связи с другим атомом Углерода (вторая — на формирование σ-связи с атомом Водорода). А две не гібридизовані р-орбитали (ру,pz) размещаются перпендикулярно друг к другу и к оси соединения атомов (0Х).

С помощью π-связи формируется молекула бензену и других аренов.

Длина связи (ароматического, «полуторного», сказывается)1являетсяпромежуточной между длиной простого (0,154 нм) и двойной (0,134 нм) связи и составляет 0,140 нм.

Все шесть атомов Углерода имеют общую π-электронное облако, плотность которой локализована над и под плоскостью ароматического ядра и равномерно распределена (делокалізована) между всеми атомами Углерода. По современным представлениям она имеет форму тороида:

1Под длиной связи понимают расстояние между центрами ядер атомов Углерода, участвующих в связи.

Напишите хоть что-то, пожалуйста!! 1) Пи-связь имеется в молекуле: а) метанола б)

Напишите хоть что-то, пожалуйста!!

1) Пи-связь имеется в молекуле:

а) метанола

б) этандиола-1,2

в) формальдегида

г) фенола

2) Пи-связь имеется в молекуле:

а) олеиновой кислоты

б) диэтилового эфира

в) глицерина

г) циклогексана

3) Изомерами являются:

а) этанол и этандиол

б) пентановая кислота и 3-метилбутановая кислота

в) метанол и пропанол-1

г) пентановая кислота и 3-метилпентановая кислота

4) Изомерами являются:

а) этанол и этаналь

б) пропаналь и пропанон

в) пентанол и этиленгликоль

в) пропаналь и пропанон

г) уксусная кислота и этилацетат

5) Атома кислорода не содержит:

а) гидроксильная группа

б) карбоксильная группа

в) карбонильная группа

г) аминогруппа

6) Межмолекулярные водородные связи характерны:

а) для метанола

б) для ацетальдегида

в) для метана

г) для диметилового эфира

7) Восстановительные свойства этанол проявляет в реакции:

а) с натрием

б) с пропановой кислотой

в) с бромоводородом

г) с оксидом меди (II)

8) Взаимодействуют между собой:

а) формальдегид и бензол

б) уксусная кислота и хлорид натрия

в) глицерин и гидроксид меди (II)

г) этанол и фенол

При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или -типу.

  • σ-Связь – ковалентная связь, образованная при перекрывании s -, p — и гибридных АО вдоль оси , соединяющей ядра связываемых атомов (т.е.

    при осевом перекрывании АО).

  • π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р -АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.

π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи).

π-Связь слабее σ-связи из-за менее полного перекрывания р -АО.

    Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей .
  1. σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами.
  2. По σ-связям возможно внутримолекулярное вращение атомов, т.к.

    форма σ-МО допускает такое вращение без разрыва связи (аним., ~33 Kб). Вращение по двойной (σ + π) связи невозможно без разрыва π-связи!

  3. Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами.

    Поэтому поляризуемость π-связи значительно выше, чем σ-связи.