Число энергетических уровней определяется. Энергетический уровень атома: строение и переходы. Неделимый, составной, квантовый

Сегодня поведаем о том, что такое энергетический уровень атома, когда человек сталкивается с этим понятием, и где оно применяется.

Школьная физика

Люди впервые встречаются с естественными науками в школе. И если на седьмом году обучения дети еще находят новые знания по биологии и химии интересными, то в старших классах их начинают бояться. Когда приходит черед атомной физики, уроки по этой дисциплине уже внушают только отвращение к непонятным задачам. Однако стоит помнить, что у всех открытий, которые сейчас превратились в скучные школьные предметы, нетривиальная история и целый арсенал полезных применений. Узнавать, как устроен мир - это как открывать шкатулку с чем-то интересным внутри: всегда хочется найти потайное отделение и обнаружить там еще одно сокровище. Сегодня мы расскажем об одном из базовых физики, строении вещества.

Неделимый, составной, квантовый

С древнегреческого языка слово «атом» переводится как «неделимый, наименьший». Такое представление - следствие истории науки. Некоторые древние греки и индийцы верили, что все на свете состоит из мельчайших частиц.

В современной истории были произведены намного раньше физических исследований. Ученые семнадцатого и восемнадцатого веков работали в первую очередь для увеличения военной мощи страны, короля или герцога. А чтобы создать взрывчатку и порох, надо было понять, из чего они состоят. В итоге исследователи выяснили: некоторые элементы нельзя разделить дальше определенного уровня. Значит, существуют наименьшие носители химических свойств.

Но они ошибались. Атом оказался составной частицей, а его способность изменяться носит квантовый характер. Об этом говорят и переходы энергетических уровней атома.

Положительное и отрицательное

В конце девятнадцатого века ученые вплотную подошли к изучению мельчайших частиц вещества. Например, было понятно: атом содержит как положительно, так и отрицательно заряженные составляющие. Но была неизвестна: расположение, взаимодействие, соотношение веса его элементов оставались загадкой.

Резерфорд поставил опыт по рассеянию альфа-частиц тонкой Он выяснил, что в центре атомов находятся тяжелые положительные элементы, а по краям расположены очень легкие отрицательные. Значит, носителями разных зарядов являются не похожие друг на друга частицы. Это объясняло заряд атомов: к ним можно было добавить элемент или удалить его. Равновесие, которое поддерживало нейтральность всей системы, нарушалось, и атом приобретал заряд.

Электроны, протоны, нейтроны

Позже выяснилось: легкие отрицательные частицы - это электроны, а тяжелое положительное ядро состоит из двух видов нуклонов (протонов и нейтронов). Протоны отличались от нейтронов только тем, что первые были положительно заряженными и тяжелыми, а вторые имели только массу. Изменить состав и заряд ядра сложно: для этого требуются неимоверные энергии. А вот электроном атом делится гораздо легче. Есть более электроотрицательные атомы, которые охотнее «отбирают» электрон, и менее электроотрицательные, которые скорее «отдадут» его. Так формируется заряд атома: если электронов избыток, то он отрицательный, а если недостаток - то положительный.

Длинная жизнь вселенной

Но такое строение атома озадачивало ученых. Согласно господствовавшей в те времена классической физике, электрон, который все время двигался вокруг ядра, должен был непрерывно излучать электромагнитные волны. Так как этот процесс означает потерю энергии, то все отрицательные частицы вскоре потеряли бы свою скорость и упали на ядро. Однако вселенная существует уже очень долго, а всемирной катастрофы еще не произошло. Назревал парадокс слишком старой материи.

Постулаты Бора

Объяснить несоответствие смогли постулаты Бора. Тогда это были просто утверждения, скачки в неизвестное, которые не подтверждались расчетами или теорией. Согласно постулатам, существовали в атоме энергетические уровни электронов. Каждая отрицательно заряженная частица могла находиться только на этих уровнях. Переход между орбиталями (так назвали уровни) осуществляется прыжком, при этом выделяется или поглощается квант электромагнитной энергии.

Позже открытие Планком кванта объяснило такое поведение электронов.

Свет и атом

Количество энергии, необходимой для перехода, зависит от расстояния между энергетическими уровнями атома. Чем они дальше друг от друга, тем больше выделяемый или поглощаемый квант.

Как известно, свет - это и есть квант электромагнитного поля. Таким образом, когда электрон в атоме переходит с более высокого на более низкий уровень, он творит свет. При этом действует и обратный закон: когда электромагнитная волна падает на предмет, она возбуждает его электроны, и они переходят на более высокую орбиталь.

Кроме того, энергетические уровни атома индивидуальны для каждого вида химического элемента. Узор расстояний между орбиталями различается для водорода и золота, вольфрама и меди, брома и серы. Поэтому анализ спектров испускания любого объекта (в том числе и звезды) однозначно определяет, какие вещества и в каком количестве в нем присутствуют.

Применяется этот метод невероятно широко. Спектральный анализ используется:

  • в криминалистике;
  • в контроле качества еды и воды;
  • в производстве товаров;
  • в создании новых материалов;
  • в усовершенствовании технологий;
  • в научных экспериментах;
  • в исследовании звезд.

Этот перечень лишь примерно показывает, насколько полезным оказалось открытие электронных уровней в атоме. Электронные уровни - самые грубые, самые большие. Существуют более мелкие колебательные, и еще более тонкие вращательные уровни. Но они актуальны только для сложных соединений - молекул и твердых тел.

Надо сказать, что структура ядра до сих пор не исследована до конца. Например, нет ответа на вопрос о том, почему определенному количеству протонов соответствует именно такое число нейтронов. Ученые предполагают, что атомное ядро тоже содержит некий аналог электронных уровней. Однако до сих пор это не доказано.

1 (2 балла). Распределение электронов по энергетическим уровням в атоме калия:

А. 2е, 8е, 8е, 1е В. . 2е, 8е,

18е, 8е, 1е
Б. 2е, 1е Г. 2е, 8е, 1е

2 (2 балла). Число электронов на внешнем электронном слое у атома алюминия:

А. 1 Б. 2 В. 3 Г.4

3 (2 балла). Простое вещество с наиболее ярко выраженными металлическими свойствами:

А. Кальций Б. Барий В. Стронций Г. Радий

4 (2 балла). Вид химической связи в простом веществе - алюминий:

А. Ионная Б. Ковалентная полярная

В. Металлическая Г. Ковалентная неполярная

5 (2 балла). Число энергетических уровней у элементов одной подгруппы сверху вниз:

А. Изменяется периодически. Б. Не изменяется.

В. Увеличивается. Г. Уменьшается.

6 (2 балла). Атом лития отличается от иона лития:

А. 3арядом ядра. Б. Числом электронов на внешнем энергетическом уровне.

В. Числом протонов. Г. Числом нейтронов.

7 (2 балла.). Наименее энергично реагирует с водой:

А. Барий. В. Магний.

Б. Кальций. Г. Стронций

8 (2 балла). С раствором серной кислоты не взаимодействует:

А. Алюминий. В. Натрий

Б. Магний. Г. Медь

9 (2 балла). Гидроксид калия не взаимодействует с веществом, формула которого:

А. Na2O В. АlСl3

Б. Р2O5 Г. Zn(NO3)2

10 (2 балла). Ряд, в котором все вещества реагируют с железом:

А. НСl, СО2, СО

Б. CO2, HCl, S

В. Н2, O2, СаO

Г. O2, СuSO4, Н2SO4

11 (9 баллов). Предложите три способа получения гидроксида натрия. Ответ подтвердите уравнениями реакций.

12 (6 баллов). Осуществите цепочку химических превращений, составив уравнения реакций в молекулярном и ионном видах, назовите продукты реакций:

FeCl2 → Fe(OH)2 → FeSO4 → Fe(OH)2

13 (6 баллов). Как, используя любые реактивы (вещества) и цинк, получить его оксид, основание, соль? Составьте уравнения реакций в молекулярном виде.

14 (4 балла). Составьте уравнение химической реакции взаимодействия лития с азотом. Определите восстановитель и окислитель в этой реакции

1 Периодическое повторение числа электронов на внешнем уровне атома объясняет_______________ 2. Количество энергетических уровней атома можно

определить по:
A. номером группы;
Б. номеру периода;
B. порядковым номером.

4. Какая из характеристик химических элементов не меняется в главных подгруппах:
А радиус атома;
Б число электронов на внешнем уровне;
В. число энергетических уровней.

5. Общее у строении атомов элементов с порядковыми номерами 7 и 15:

A. число электронов на внешнем уровне, Б. заряд ядра;

B. число энергетических уровней.

Установите соответствие между символом химичесого элемента (в заданном порядке) и числом электронов на внешнем энергетическом уровне его атома.Из букв

Соответствующих правильным ответам, вы составите название установки, которая позволит человечеству еще глубже познать строение атома(9 букв).

Число е на Символ элемента

Энергетическом

уровне Mg Si I F C Ba Sn Ca Br

2 к а п о л й с е м

4 а о в к а т д ч я

7 в й л л н г о л р

1 (3 балла). Распределение электронов по энергетическим уровням в атоме натрия-

А. 2 ē, 1 ē Б. 2 ē, 4 ē В. 2 ē, 8 ē, 1ē. Г. 2 ē, 8 ē, 3ē.

2 (4 балла) Номер периода в Периодической системе Д. И. Менделеева, в котором нет химических элементов-металлов: А. 1. Б. 2. В. 3. Г. 4.

3 (3 балла). Вид химической связи в простом веществе кальции:

A. Ионная. Б. Ковалентная полярная. B. Ковалентная неполярная. Г. Металлическая.

4 (3 балла). Простое вещество с наиболее ярко выраженными металлическими свойствами:

А. Алюминий. Б. Кремний. В. Магний. Г. Натрий.

5 (3 балла). Радиус атомов элементов 2-го периода с увеличением заряда ядра от щелочного металла к галогену: A.Изменяется периодически. Б. Не изменяется. B. Увеличивается. Г. Уменьшается.

6 (3 балла). Атом магния отличается от иона магния:

A. Зарядом ядра. Б. Зарядом частицы. B. Числом протонов. Г. Числом нейтронов.

7 (3 балла). Наиболее энергично реагирует с водой:

А. Калий. Б. Литий. В. Натрий. Г. Рубидий.

8 (3 балла). С разбавленной серной кислотой не взаимодействует:

А. Алюминий. Б. Барий. В. Железо. Г. Ртуть.

9 (3 балла). Гидроксид бериллия не взаимодействует с веществом, формула которого:

A. NaOH(p р). Б. NaCl(p_p). В. НС1(р_р). Г. H2SО4.

10 (3 балла). Ряд, в котором все вещества реагируют с кальцием:

А. СО2, Н2, НС1. В. NaOH, Н2О, НС1. Б. С12, Н2О, H2SО4. Г. S, H2SО4, SО3.

ЧАСТЬ Б. Задания со свободным ответом

11 (9 баллов). Предложите три способа получения сульфата железа (II). Ответ подтвердите уравнениями реакций.

12 (6 баллов). Определите вещества X, Y, Z, запишите их химические формулы.

Fe(OH)3(t)= X(+HCl)= Y(+NaOH)=Z(t) Fe2О3

13 (6 баллов). Как, используя любые реактивы (вещества) и алюминий, получить оксид, амфотерный гидроксид? Составьте уравнения реакций в молекулярном виде.

14 (4 балла). Расположите металлы: медь, золото, алюминий, свинец в порядке увеличения плотности.

15 (5 баллов). Рассчитайте массу металла, полученного из 160 г оксида меди (II).

Что происходит с атомами элементов во время химических реакций? От чего зависят свойства элементов? На оба эти вопроса можно дать один ответ: причина лежит в строении внешнего В нашей статье мы рассмотрим электронное металлов и неметаллов и выясним зависимость между структурой внешнего уровня и свойствами элементов.

Особые свойства электронов

При прохождении химической реакции между молекулами двух или более реагентов происходят изменения в строении электронных оболочек атомов, тогда как их ядра остаются неизменными. Сначала ознакомимся с характеристиками электронов, находящихся на наиболее удаленных от ядра уровнях атома. Отрицательно заряженные частицы располагаются слоями на определенном расстоянии от ядра и друг от друга. Пространство вокруг ядра, где нахождение электронов наиболее возможно, называется электронной орбиталью. В ней сконденсировано около 90 % отрицательно заряженного электронного облака. Сам электрон в атоме проявляет свойство дуальности, он одновременно может вести себя и как частица, и как волна.

Правила заполнения электронной оболочки атома

Количество энергетических уровней, на которых находятся частицы, равно номеру периода, где располагается элемент. На что же указывает электронный состав? Оказалось, что на внешнем энергетическом уровне для s- и p-элементов главных подгрупп малых и больших периодов соответствует номеру группы. Например, у атомов лития первой группы, имеющих два слоя, на внешней оболочке находится один электрон. Атомы серы содержат на последнем энергетическом уровне шесть электронов, так как элемент расположен в главной подгруппе шестой группы и т. д. Если же речь идет о d-элементах, то для них существует следующее правило: количество внешних отрицательных частиц равно 1 (у хрома и меди) или 2. Объясняется это тем, что по мере увеличения заряда ядра атомов вначале происходит заполнение внутреннего d- подуровня и внешние энергетические уровни остаются без изменений.

Почему изменяются свойства элементов малых периодов?

В малыми считаются 1, 2, 3 и 7 периоды. Плавное изменение свойств элементов по мере возрастания ядерных зарядов, начиная от активных металлов и заканчивая инертными газами, объясняется постепенным увеличением количества электронов на внешнем уровне. Первыми элементами в таких периодах являются те, чьи атомы имеют всего один или два электрона, способные легко отрываться от ядра. В этом случае образуется положительно заряженный ион металла.

Амфотерные элементы, например, алюминий или цинк, свои внешние энергетические уровни заполняют небольшим количеством электронов (1- у цинка, 3 - у алюминия). В зависимости от условий протекания химической реакции они могут проявлять как свойства металлов, так и неметаллов. Неметаллические элементы малых периодов содержат от 4 до 7 отрицательных частиц на внешних оболочках своих атомов и завершают ее до октета, притягивая электроны других атомов. Например, неметалл с наибольшим показателем электроотрицательности - фтор, имеет на последнем слое 7 электронов и всегда забирает один электрон не только у металлов, но и у активных неметаллических элементов: кислорода, хлора, азота. Заканчиваются малые периоды, как и большие, инертными газами, чьи одноатомные молекулы имеют полностью завершенные до 8 электронов внешние энергетические уровни.

Особенности строения атомов больших периодов

Четные ряды 4, 5, и 6 периодов состоят из элементов, внешние оболочки которых вмещают всего один или два электрона. Как мы говорили ранее, у них происходит заполнение электронами d- или f- подуровней предпоследнего слоя. Обычно это - типичные металлы. Физические и химические свойства у них изменяются очень медленно. Нечетные ряды вмещают такие элементы, у которых заполняются электронами внешние энергетические уровни по следующей схеме: металлы - амфотерный элемент - неметаллы - инертный газ. Мы уже наблюдали ее проявление во всех малых периодах. Например, в нечетном ряду 4 периода медь является металлом, цинк - амфотерен, затем от галлия и до брома происходит усиление неметаллических свойств. Заканчивается период криптоном, атомы которого имеют полностью завершенную электронную оболочку.

Как объяснить деление элементов на группы?

Каждая группа - а их в короткой форме таблицы восемь, делится еще и на подгруппы, называемые главными и побочными. Такая классификация отражает различное положение электронов на внешнем энергетическом уровне атомов элементов. Оказалось, что у элементов главных подгрупп, например, лития, натрия, калия, рубидия и цезия последний электрон расположен на s-подуровне. Элементы 7 группы главной подгруппы (галогены) заполняют отрицательными частицами свой p-подуровень.

Для представителей побочных подгрупп, таких, как хром, типичным будет наполнение электронами d-подуровня. А у элементов, входящих в семейства накопление отрицательных зарядов происходит на f-подуровне предпоследнего энергетического уровня. Более того, номер группы, как правило, совпадает с количеством электронов, способных к образованию химических связей.

В нашей статье мы выяснили, какое строение имеют внешние энергетические уровни атомов химических элементов, и определили их роль в межатомных взаимодействиях.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ

Наименование параметра Значение
Тема статьи: ЭНЕРГЕТИЧЕСКИЕ УРОВНИ
Рубрика (тематическая категория) Образование

СТРОЕНИЕ АТОМА

1. Развитие теории строения атома. С

2. Ядро и электронная оболочка атома. С

3. Строение ядра атома. С

4. Нуклиды, изотопы, массовое число. С

5. Энергетические уровни.

6. Квантово-механическое объяснение строения.

6.1. Орбитальная модель атома.

6.2. Правила заполнения орбиталей.

6.3. Орбитали с s-электронами (атомные s-орбитали).

6.4. Орбитали с p-электронами (атомные p-орбитали).

6.5. Орбитали с d- f-электронами

7. Энергетические подуровни многоэлектронного атома. Квантовые числа.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ

Строение электронной оболочки атома определяется различным запасом энергииотдельных электронов в атоме. В соответствии с моделью атома Бора электроны могут занимать в атоме положения, которым отвечают точно определœенные (квантованные) энергетические состояния. Эти состояния называются энергетическими уровнями.

Число электронов, которые могут находиться на отдельном энергетическом уровне, определяется формулой 2n 2 , где n –номер уровня, который обозначается арабскими цифрами 1 – 7. Максимальное заполнение первых четырех энергетических уровней в. соответствии с формулой 2n 2 составляет: для первого уровня – 2 электрона, для второго – 8, для третьего –18 и для четвертого уровня – 32 электрона. Максимальное заполнение электронами более высоких энергетических уровней в атомах известных элементов не достигнуто.

Рис. 1показывает заполнение электронами энергетических уровней первых двадцати элементов (от водорода Н до кальция Са, черные кружки). Заполняя в указанном порядке энергетические уровни, получают простейшие модели атомов элементов, при этом соблюдают порядок заполнения (снизу вверх и слева направо по рисунку) таким образом, пока последний электрон не укажет на символ соответствующего элементаНа третьем энергетическом уровне М (максимальная емкость равна 18 е - )для элементов Nа – Аr содержится только 8 электронов, затем начинает застраиваться четвертый энергетический уровень N –на нем появляются два электрона для элементов К и Са. Следующие 10 электронов снова занимают уровень М (элементы Sc – Zn (не показаны), а потом продолжается заполнение уровня N еще шестью электронами (элементы Cа-Кr, белые кружки).

Рис. 1 Рис. 2

В случае если атом находится в основном состоянии, то его электроны занимают уровни с минимальной энергией, т. е. каждый последующий электрон занимает энергетически самое выгодное положение, такое, как на рис. 1. При внешнем воздействии на атом, связанном с передачей ему энергии, к примеру путем нагревания, электроны переводятся на более высокие энергетические уровни (рис. 2). Такое состояние атома принято называть возбужденным. Освободившееся на нижнем энергетическом уровне место заполняется (как выгодное положение) электроном с более высокого энергетического уровня. При переходе электрон отдает неĸᴏᴛᴏᴩᴏᴇ количество энергии, ĸᴏᴛᴏᴩᴏᴇ соответствует энергетической разности между уровнями. В результате электронных переходов возникает характерное излучение. по спектральным линиям поглощаемого (излучаемого) света можно сделать количественное заключение об энергетических уровнях атома.

В соответствии с квантовой моделью атома Бора электрон, имеющий определœенное энергетическое состояние, движется в атоме по круговой орбите. Электроны с одинаковым запасом энергии находятся на равных расстояниях от ядра, каждому энергетическому уровню отвечает свой набор электронов, названный Бором электронным слоем. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по Бору электроны одного слоя двигаются по шаровой поверхности, электроны следующего слоя по другой шаровой поверхности. всœе сферы вписаны одна в другую с центром, отвечающим атомному ядру.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ - понятие и виды. Классификация и особенности категории "ЭНЕРГЕТИЧЕСКИЕ УРОВНИ" 2017, 2018.