Почему контроль космического пространства так важен. На пути к Луне. Почему так важен запуск ракеты Falcon Heavy? История создания системы контроля космического пространства

Станислав ВЕНИАМИНОВ,

научно-исследовательский испытательный центр (г. Москва) Центрального научно-исследовательского института Войск воздушно-космической обороны, действительный член Meждyнapoднoй академии астронавтики и аэронавтики, член экспертной рабочей группы по космическим угрозам, член Meждyнapoднoгo комитета пo проблемам засорения космического пространства и Комитета пo проблемам загрязнения космоса Haциoнaльнoгo исследовательского совета CШA, доктор технических наук, профессор.

По материалам доклада «Техногенное засорение космоса и некоторые его военные аспекты»

«МУСОРНАЯ» СТАТИСТИКА

После запуска первого спутника Земли космические державы осуществили более 5000 запусков. За весь период освоения космоса в околоземное космическое пространство выведено свыше 30 тысяч крупных (размером более 10-20 см) космических объектов (КО). Зарегистрированных гораздо больше (порядка 35 тысяч) - ввиду произошедшей фрагментации некоторых крупных космических объектов. Более двух третей из них всё ещё остаются на орбитах и контролируются наземными и космическими средствами наблюдения. На сегодня официально каталогизировано свыше 17 тысяч КО.

Однако системы контроля космического пространства (СККП) США и РФ отслеживают свыше 23 тысяч космических объектов размером более 10 см. При этом 95 % каталога космических объектов составляет космический мусор (КМ). Подчёркиваю: приведённые количественные характеристики касаются только крупных космических объектов, а с учётом гигантских космических скоростей их движения и с точки зрения представляемой ими угрозы (которая пропорциональна квадрату скорости) их следует расценивать как очень крупные. Понятно, что столкновение с любым из них реального космического аппарата будет катастрофическим. Но не только с ними.

На сегодняшний день космических объектов размером более 5 см - порядка 100 тысяч. Кроме них на орбитах находится огромное количество мелкого КМ: по разным оценкам более 500-600 тысяч размером от 1 до 10 см до сотен миллионов размером от 1 мм до 1 см. Количество более мелкого КМ исчисляется миллиардами и триллионами (см. рис. 1) . И почти все они представляют опасность при столкновении, хотя и в разной степени.

Почему-то принято считать (даже в кругах некоторых специалистов), что катастрофическую угрозу для космического аппарата представляют столкновения с космическим объектом размером более 1 см. Но решающими факторами здесь являются относительная скорость атакующей частицы, место космического аппарата, в которое она ударит, и направление её вектора скорости относительно поверхности космического аппарата в точке соприкосновения. Так что смертельно опасными могут оказаться и пылинки космического мусора.

И это не гипербола. Ярким примером служит случай с российским метрологическим спутником «Блиц». Он, имея диаметр всего 17 см, 22 января 2013 года столкнулся с частицей массой менее 0,08 г и раскололся, по крайней мере, на два фрагмента, которые были обнаружены и каталогизированы.


Однако существующими средствами можно относительно надёжно зафиксировать лишь космический объект размером 10-20 см, то есть большинство (> 99,97 %) потенциально опасного космического мусора не контролируется. Из каждых 10 000 потенциально опасных космических объектов наблюдаются только три. И в этом состоит главная проблема контроля космического мусора, масштабы которой наглядно иллюстрирует рисунок 1.


Любой космический мусор в разной степени опасен для космической деятельности и не только для неё. Самый крупный космический мусор при входе в плотную атмосферу несёт угрозу для наземных объектов и людей. Что касается самого мелкого космического мусора, то астрономы давно уже заметили, что за последние десятилетия прозрачность среды околоземного космического пространства ощутимо снизилась, что мешает вести астрономические наблюдения.

Кроме того, он сильно повреждает чувствительные поверхности бортовых приборов, например оптику. Так что важно контролировать любой космический мусор.

Прогрессирующий рост засорённости ОКП наглядно характеризуют следующие два графика (см. рис. 2 и 3), причём каждый по-своему. Рисунок 3 показывает неуклонный рост средней плотности техногенного засорения ОКП, а скачки на рисунке 2, на котором отражена история количественного изменения состава каталога космических объектов по годам, иллюстрируют скачкообразный рост опасности столкновений с космическим мусором. (На рисунке 3 их нет, так как скачкообразно изменяется только количество космических объектов после катастрофических разрушений, а не их суммарная масса.)



Из осуществлённых человеком более 5000 запусков ИСЗ на интервале около 60 лет только 10 из них породили одну треть сегодняшнего каталога космических объектов. Причём из этой десятки шесть приходятся на последние 10 лет!

С усилением засорения ОКП растёт и количество столкновений космических аппаратов с космическим мусором и космического мусора между собой. На рисунке 4 показан полученный с помощью модели НАСА LEGEND прогноз роста количества столкновений крупных космических объектов на ближайшие 100 лет для нескольких сценариев освоения космоса.

На рисунке 5 приведён аналогичный прогноз на 200 лет с помощью российской модели А. И. Назаренко.


Павел ВИНОГРАДОВ,

Космонавт, совершивший семь выходов в открытый космос, Герой РФ. Общая продолжительность его работы в открытом космосе на 2014 год - 38 часов 25 минут.

Количество космических объектов на орбите Земли столь велико, что все угрозы из космоса абсолютно реальны. Если на Землю прилетит объект диаметром 2 или 2,5 километра, то всё живое на Земле может погибнуть.

КАСКАДНЫЙ ЭФФЕКТ

В обоих предсказаниях, полученных на независимых моделях, экспоненциальный характер роста числа столкновений крупных космических объектов и общего количества мелкого космического мусора при умеренном росте количества крупных космических объектов - это уже признак каскадного эффекта. Аналогичные неутешительные перспективы предсказывают и другие модели.

Наиболее мрачная перспектива нашего космического будущего - это возникновение и развитие каскадного эффекта (синдрома Кесслера) в ОКП, то есть стремительно расширяющегося цепного процесса образования вторичных осколков. В этой самой трагической фазе процесса засорения ОКП космический мусор приобретает уже некий агрессивный характер, которому уже мало что можно противопоставить. Общий характер каскадного эффекта такой же, как и у ядерной цепной реакции. Разница лишь во временном масштабе развития процесса.

Вероятность столкновений зависит в первую очередь от количества космических объектов в данной орбитальной области, а не от их суммарной массы. Но именно общая масса космического мусора (точнее, суммарная кинетическая энергия космического мусора) определяет в перспективе скорость и интенсивность развития каскадного эффекта.

Многие учёные считают, что каскадный эффект уже начался в некоторых орбитальных областях и для некоторых классов космического мусора (например, на высотах 900-1000 км и 1500 км) (см. рис. 6) .


УГРОЗЫ СТОЛКНОВЕНИЯ

Рост вероятности столкновения космического аппарата с космическим мусором наглядно демонстрирует история учёта угрозы космического мусора работе Международной космической станции (МКС). На рисунке 7 представлена диаграмма изменения количества манёвров уклонения МКС от столкновения с космическим мусором по годам (по данным ЦУПа).

В области геостационарной орбиты (ГСО) столкновение с космическим мусором не так опасно, как на низких орбитах, поскольку там скорость движения космических объектов обычно не превышает 3 км/с, кроме того, космические объекты в геостационарном поясе движутся в основном в одну сторону (в отличие от области низких орбит). Поэтому средняя относительная скорость при столкновении и того меньше - 0,5 км/с.

Если удары мелкого космического мусора не вызывают серьёзных структурных повреждений, создаваемые ими сколы, кратеры, пробоины, царапины, эрозии, мелкие трещины приводят к постепенной деградации поверхности космического аппарата, ослабляя её и делая более уязвимой для воздействия внешней среды и последующих столкновений с космическим мусором.

Геннадий ПАДАЛКА,

Российский космонавт, полковник ВВС, Герой РФ. Занимает первое место по суммарной продолжительности нахождения в космосе - 878 дней.

В каждом из пяти моих полётов манёвры по уклонению от столкновения с космическим мусором выполнялись по нескольку раз.

В течение последних десятилетий многократно наблюдались внезапные выходы из строя космических аппаратов военного назначения, причины которых так и не удалось официально установить ни с помощью наблюдений, ни посредством телеметрии. Остаются два возможных объяснения - незарегистрированное столкновение с космическим мусором или «происки» вероятного космического противника. А это уже политически опасная дилемма.

Таким образом, на сегодняшний день существующая популяция космического мусора (КМ), с точки зрения воздушно-космической обороны, представляет собой мощную неуправляемую орбитальную группировку, создающую угрозу как военным, так и гражданским космическим аппаратам (КА), а также наземным объектам (в частности, оборонного назначения и государственным стратегическим объектам) независимо от их государственной принадлежности. Этот факт означает появление нового своеобразного игрока на космическом театре военных действий в отличие от наземного, морского и воздушного театров.


Cуществующая популяция космического мусора (КМ), с точки зрения воздушно-космической обороны, представляет собой мощную неуправляемую орбитальную группировку, создающую угрозу как военным, так и гражданским космическим аппаратам (КА), а также наземным объектам (в частности, оборонного назначения и государственным стратегическим объектам) независимо от их государственной принадлежности. Этот факт означает появление нового своеобразного игрока на космическом театре военных действий в отличие от наземного, морского и воздушного театров.

Особенностью этого игрока является его абсолютная независимость. Степень опасности нового игрока определяется прежде всего следующими тремя факторами: длительное время орбитального существования космического мусора, высокая скорость движения, трудность его утилизации.

Следствием этих факторов (особенно второго) является то, что даже самый мелкий космический мусор (размерами менее 1 см) может представлять серьёзную опасность для космического аппарата.

Особенно опасен мелкий космический мусор в низкоорбитальной области (основной тактической и оперативной зоне космического театра военных действий), где относительные скорости космических аппаратов и космического мусора могут превышать 15 км/с, а в перигейной области высокоэллиптических орбит - 17 км/с. А при таких скоростях столкновение космического аппарата даже с мельчайшим мусором может не только повредить солнечные панели, иллюминаторы и оптические поверхности бортовых наблюдательных инструментов, но и уничтожить космический аппарат, как это было в случае с КА «Блиц».

Особая политическая опасность, которую несёт появление такой независимой группировки в ОКП, состоит в том, что непредсказуемое воздействие этой группировки на космический аппарат (особенно военного назначения) может спровоцировать политический или даже вооружённый конфликт между космическими державами. Не всегда страна-собственник космического аппарата, подвергнутого воздействию космического мусора, может оперативно определить действительную причину его выхода из строя (или потери эффективности его функционирования).

ЛИТЕРАТУРА:

1. Вениаминов С. С. Космический мусор - угроза человечеству. 2-е издание, исправ. и доп. М.: ИКИ РАН, 2013. (Сер. Механика, управление, информатика).

2. Аксёнов О., Олейников И. и др. Анализ заселённости ОКП объектами техногенного происхождения // Полёт. Общероссийский научно-технический журнал. 2014. № 9. С. 8-14.

3. Orbital Debris Quarterly News. NASA, USA, Jan. 2015. V. 19. Iss. 1.

4. Liou J.-C. An Updated Assessment of the Orbital Debris Environment in Leo // Orbital Debris Quarterly News. January 2010. V. 14. Iss. 1.

5. Potter A. Early detection of Collisional cascading // Proceedings of the 1st European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, 1993.

6. Назаренко А. Прогноз засорённости ОКП на 200 лет и синдром Кесслера [Электрон. текст]. Метод доступа:

7. Nazarenko A. Space Debris Status for 200 years ahead & Kessler effect // 29th IADC Meeting, Berlin, Germany, 2011.

8. Kessler D. et al. The Kessler syndrome: Implications to Future Space Operations // 33rd Annual American Astronautical Society, Rocky Mountain Section, Guidance and Control Conference, Breckinridge, Colorado, USA, 2010.

9. Small Satellite Possibly Hit by Even Smaller Object // Orbital Debris Quarterly News. NASA, USA, April 2013. V. 17. Iss. 2.

10. Orbital Debris Quarterly News. NASA, USA, January 2014. V. 18. Iss. 1. Р. 10.

11. Orbital Debris. A Technical Assessment // NRC. National Academy Press, Washington, D.C. 1995.

1:44 08/02/2018

0 👁 636

6 февраля 2018 года, в 23:45 минут по московскому времени, частная американская компания SpaceX успешно запустила в космос самую тяжёлую и грузоподъёмную на настоящий момент - . Почему это событие настолько важно для космонавтики всего мира, разбирался журналист Лайфа Михаил Котов.

Из жизни сверхтяжей

Так уж получилось, что в настоящее время в мире не осталось сверхтяжёлых ракет, да и вообще ракет, способных облететь и вернуться обратно. Давно уже стала историей американская , советская Н-1, так и не совершившая ни одного удачного запуска, и “Энергия”, на чьём счету два успешных полёта. была закрыта по причине высокой стоимости, вот и получается, что у человечества нет ракеты для полёта на Луну или осуществления марсианских миссий.

Вообще разделение на тяжёлые и сверхтяжёлые ракеты-носители достаточно условное. Вот, например, российская ракета “Протон”, тоже тяжёлая. Однако в максимальной модификации она может вывести на низкую опорную орбиту 23 тонны, на геостационарную 3,7 тонны, а Луну с её помощью уже не облететь - не хватит топлива и мощности.

В отличие от неё запущенная вчера Falcon Heavу способна вот в таком, возвращаемом варианте вывести на низкую опорную орбиту 34,5 тонны полезной нагрузки. А уж если пожертвовать первыми ступенями, то, согласно расчётам, в космос можно отправить более 55 000 килограммов (63 800кг – прим. ред ). Такого запаса, по расчётам, хватит, чтобы отправить обитаемый космический корабль в путешествие вокруг Луны и обратно. Увы, но пока о высадке говорить не приходится.

В этот раз вместо полезной нагрузки на ракете был установлен личный автомобиль Илона Маска, электромобиль Tesla Roadster. За его рулём сидел манекен в скафандре, на приборной доске красовалась надпись “Без паники!”, а из колонок машины непрерывно неслись песни Дэвида Боуи. В итоге автомобиль будет доставлен куда-то на гелиоцентрическую орбиту, где и станет летать ближайшие несколько миллионов лет. Непрактично, зато, чёрт возьми, красиво.

Возвращаемый рекорд

В итоге мы имеем событие, словно из кирпичиков, составленное из маленьких рекордов. Вчера была запущена самая тяжёлая на настоящее время ракета, при этом она создана частной компанией в достаточно короткие сроки и её запуск стоит беспрецедентно дешево, менее 100 миллионов долларов.

За счёт чего была достигнута такая низкая цена? Всё дело в том, что компания SpaceX просто собрала свою ракету из трёх ракет-носителей среднего класса (центральная ступень, не является ступенью Falcon 9, по словам самого Маска, это “другое изделие” – прим. ред. ). Центральная часть была удлиннена, а в её верхней части разместилась полезная нагрузка. После старта, отработав положенное время, от ракеты отделились два боковых ускорителя, первые ступени ракеты Falcon 9. Они затормозились в и, используя оставшееся топливо и собственные двигатели, вернулись на космодром, где и синхронно сели на специально подготовленные площадки. Теперь эти ступени проверят и используют для следующего старта. А с учётом того, что сели они прямо на космодром, SpaceX ещё и экономит деньги на их доставку в сервисный центр.

Точно такой же финт должна была сделать и первая ступень центральной части ракеты. Она отделилась, затормозилась в воздухе и должна была сесть на плавучую платформу, заботливо оставленную в океане. Однако расчёт оказался неверен, топлива не хватило, сработал только один из двигателей, использовавшихся при посадке, и ступень ухнула в воду с тучей брызг в нескольких метрах от платформы.

Кого коснётся этот запуск?

На данное время Falcon Heavy наиболее грузоподъёмная из всех существующих ракет в мире. Больше неё поднять в обозримом будущем сможет только строящийся проект NASA . На , когда будет собрана, SLS сможет забрасывать от 70 до 130 тонн, что близко к недосягаемому лидеру списка - , использовавшемуся в американской лунной программе. Впрочем, специалисты уверяют, что в данном случае немного разнятся способы подсчёта и, согласно другим данным, SLS может стать самой мощной ракетой в истории человечества. Всего же проект по её созданию до 2025 года съест у американского бюджета 35 миллиардов долларов.

И вот тут главный вопрос? А после того как стартовал Falcon Heavy с объявленной ценой за запуск менее 100 миллионов долларов в одноразовом варианте, стоит ли доделывать огромную и громоздкую SLS, один старт которой будет стоить никак не меньше 500 миллионов долларов. В настоящее время в NASA, скорее всего, созываются серьёзные конференции, где будет решаться судьба этой ракеты.

Задуматься о возможном переделе мест в тяжёлом классе запусков стоит и другим странам, использующим тяжёлые носители, в том числе и России. Пока не известно, за какую цену будет предлагаться возвращаемый запуск, но есть ощущение, что SpaceX способна предложить очень конкурентоспособную цену. Российский сверхтяж, предполагается, совершит первый полёт в 2028 году, если всё пойдёт удачно. Что успеет сделать Илон Маск за ближайшие 10 лет, известно только ему. Однако нам точно нужно ускоряться, чтобы наш родной сверхтяж был востребован.

На момент высадки на Луну в 1969 году многие искренне считали, что к началу 21 века космические путешествия станут обыденным делом, и земляне начнут преспокойно летать на другие планеты. К сожалению, это будущее еще не настало, а люди начали сомневаться, нужны ли нам вообще эти космические путешествия. Может быть и Луны достаточно? Тем не менее, исследования космоса продолжают давать нам бесценную информацию в сфере медицины, добычи полезных ископаемых и безопасности. Ну и, конечно же, прогресс в изучении космического пространства действует на человечество вдохновляюще!

1. Защита от возможного столкновения с астероидом

Если мы не хотим закончить как динозавры, необходимо защитить себя от угрозы столкновения с большим астероидом. Как правило, примерно раз в 10 тысяч лет в Землю угрожает врезаться какое-нибудь небесное тело размером с футбольное поле, что может привести к необратимым последствиям для планеты. Нам действительно следует опасаться таких «гостей» диаметром минимум в 100 метров. Столкновение поднимет пылевую бурю, уничтожит леса и поля, обречёт на голод тех, кто останется в живых. Специальные космические программы направлены на то, чтобы установить опасный объект задолго до того, как он приблизится к Земле, и сбить его с траектории движения.

2. Возможность появления новых великих открытий

Немалое количество всевозможных гаджетов, материалов и технологий первоначально были разработаны для космических программ, но в дальнейшем они нашли своё применение на Земле. Мы все знаем о продуктах, полученных путем сублимационной сушки, и давно их употребляем. В 1960-е годы ученые разработали специальный пластик, покрытый отражающим напылением из металла. При его использовании в производстве обычных одеял он сохраняет до 80% тепла тела человек. Еще одной ценной инновацией является нитинол — гибкий, но упругий сплав, созданный для производства спутников. Теперь из этого материала изготавливают стоматологические брекеты.

3. Вклад в медицину и сферу здравоохранения

Освоение космоса привело к появлению множества медицинских инноваций для земного использования: например, метод введения противораковых лекарств непосредственно в опухоль, аппаратура, с помощью которой медсестра может делать УЗИ и моментально передавать данные врачу за тысячи километров от неё, и механическая рука-манипулятор, выполняющая сложные действия внутри аппарата МРТ. Фармацевтические разработки в области защиты космонавтов от потери костной и мышечной массы в условиях микрогравитации привели к созданию препаратов для профилактики и лечения остеопороза. Причем эти препараты было легче протестировать в космосе, поскольку космонавты теряют около 1,5% костной массы в месяц, а пожилая земная женщина теряет 1,5% в год.

4. Освоение космоса вдохновляет человечество на новые достижения

Если мы хотим создать мир, в котором наши дети будут стремиться стать учеными и инженерами, а не ведущими реалити-шоу, кинозвездами или финансовыми магнатами, то освоение космоса – это весьма вдохновляющий процесс. Пора задавать растущему поколению вопрос: «Кто хочет быть аэрокосмическим инженером и спроектировать летательный аппарат, который сможет попасть в разреженную атмосферу Марса?»

5. Нам необходимо сырье из космоса

В космическом пространстве есть золото, серебро, платина и другие ценные металлы. Некоторые международные компании уже задумываются о добыче полезных ископаемых на астероидах, так что не исключено, что в ближайшем будущем появится профессия космического шахтёра. Луна, например, является возможным «поставщиком» гелия-3 (используется для МРТ и рассматривается как возможное топливо для атомных электростанций). На Земле это вещество стоит до 5 тысяч долларов за литр. Луна также считается потенциальным источником редкоземельных элементов, таких как европий и тантал, которые пользуются большим спросом для использования в электронике, производстве солнечных батарей и других современных приборов.

6. Освоение космоса может помочь найти ответ на очень важный вопрос

Мы все верим в то, что где-то в космосе существует жизнь. Кроме того, многие считают, что инопланетяне уже посещали нашу планету. Однако мы так до сих пор не получили никаких сигналов от далёких цивилизаций. Вот почему учёные-искатели внеземных цивилизаций готовы разворачивать орбитальные обсерватории, например, космический телескоп Джеймса Вебба. Этот спутник планируется к запуску в 2018 году, и с его помощью появится возможность поиска жизни в атмосферах далеких планет за пределами нашей Солнечной системы по химическим признакам. И это только начало.

7. Людям свойственно стремление к исследованиям

Наши первобытные предки родом из Восточной Африки расселились по всей планете, и с тех пор человечество ни разу не прекращало процесса своего перемещения. Мы всегда хотим исследовать и осваивать что-то новое и неизведанное, будь то короткая прогулка на Луну в качестве туриста, или долгое межзвездное путешествие длиной в жизни нескольких поколений. Несколько лет тому назад один из руководителей НАСА озвучил различие между «понятными причинами» и «реальными причинами» освоения космического пространства. Понятные причины – это вопросы получения экономических и технологических преимуществ, а реальные причины включают такие понятия, как любопытство и желание оставить после себя след.

8. Для своей выживаемости человечеству, вероятно, придётся колонизировать космическое пространство

Мы научились отправлять спутники в космос, и это помогает нам контролировать и бороться с насущными земными проблемами, включая лесные пожары, разливы нефти и истощение водоносных горизонтов. Однако существенное увеличение количества населения, банальная жадность и неоправданное легкомыслие касательно экологических последствий уже нанесли серьезный ущерб нашей планете. Ученые считают, что Земля имеет «допускаемую нагрузку» в размере от 8 до 16 миллиардов, а нас уже более 7 миллиардов. Возможно, человечеству пора готовиться к освоению других планет для жизни.


Главная Структура Вооруженные Cилы РФ Воздушно-космические силы К 50-летию ракетно-космической обороны России Контроль космического пространства

Основной задачей системы контроля космического пространства является разведка военно-космических систем вероятных противников, обнаружение военных действий в космосе и из космоса, а также доведение информации о космической обстановке до руководства страны и Вооруженных Сил Российской Федерации и информационное обеспечение безопасности космической деятельности Российской Федерации.

Системой определяются характеристики и назначение всех космических аппаратов на высотах более 50 000 километров, состав орбитальных группировок космических систем России и иностранных государств с их распознаванием, а также признаки начала боевых действий в космосе и из космоса.

Наиболее эффективные средства СККП - это оптико-электронный комплекс «Окно», способный автономно в автоматическом режиме решать задачи контроля космических объектов на высотах от 2 000 км до 50 000 км, сбора по ним информации и ее выдачи на командные пункты, и радиооптический комплекс распознавания космических объектов «Крона».

По внешним целеуказаниям комплекс «Окно» также способен обеспечить контроль низкоорбитальных космических объектов с высотами полета от 120 до 2 000 км. Кроме того, комплекс может использоваться для экологического мониторинга космического пространства.

В свою очередь, комплекс «Крона» осуществляет обнаружение и фиксацию параметров траекторий объектов на низкой околоземной орбите, каталогизацию их характеристик и распознавание новых искусственных спутников Земли.

Основные задачи, решаемые Системой контроля космического пространства:

  1. Оперативная оценка и прогнозирование опасных изменений в околоземном космическом пространстве путем непрерывного контроля космического пространства, определения состава и состояния группировок военно-космических средств иностранных государств; контроля испытаний таких средств и развертывания противоспутниковых, противоракетных и ударных группировок.
  2. Ведение Главного каталога космических объектов - распознавание космических объектов, в том числе селекция, идентификация и определение их целевого назначения и государственной принадлежности. Автоматическое установление фактов запуска, маневра и схода космических объектов с орбиты, определение и систематическое уточнение параметров их орбит.
  3. Оценка обстановки на трассах полета отечественных космических аппаратов, прогнозирование опасных для них ситуаций, создаваемых различными космическими объектами и средствами противокосмической обороны. Оценка состояния отечественных космических аппаратов в аварийных ситуациях.
  4. Формирование и выдача на командные пункты информации о космических объектах, состоянии и изменениях космической обстановки.
  5. Обеспечение Системы предупреждения о ракетном нападении информацией о каталогизированных космических объектах в интересах снижения вероятности формирования ложной информации предупреждения о ракетном нападении.

Боевое дежурство средств СККП является выполнением боевой задачи государственной важности и несется круглосуточно. Профессионализм, высокое чувство ответственности за порученное дело, верность традициям старших поколений лежат в основе безусловного и надежного выполнения боевой задачи личным составом дежурных смен.

История создания системы контроля космического пространства

На заре активного освоения космического пространства возникла необходимость создания специальных средств наблюдения и обработки измерительной информации, которые позволяли бы определять орбиты иностранных и отечественных космических аппаратов (КА) с отказавшей или отработавшей свой ресурс бортовой аппаратурой, а также фрагменты ракет-носителей, вышедшие на орбиту. В совокупности эти средства и стали называться системой контроля космического пространства

В 1962 г. ЦК КПСС и СМ СССР приняли Постановление «О создании отечественной службы контроля космического пространства».

Первыми специализированными средствами контроля космического пространства стали радиолокационные станции «Днестр» системы предупреждения о ракетном нападении, размещенные в Казахстане (близ озера Балхаш) и Сибири (в районе Иркутска). Их общая работа позволяла создать линию наблюдения протяженностью в 5 000 км на высотах до 3 000 км. Впоследствии всего было задействовано восемь таких РЛС.

В январе 1970 г. Центр контроля космического пространства (ЦККП) заступил на боевое дежурство. В ту пору возможности ЦККП позволяли сопровождать до 500 космических объектов на высотах до 1500 км - это составляло лишь 10-15% от числа спутников, находящихся на околоземных орбитах.

В последующие годы принимались меры по расширению радиолокационного поля, модернизации РЛС и созданию в интересах Центра специализированных средств разведки и распознавания космических объектов.

По мере усложнения обстановки в космосе были развернуты активные работы по совершенствованию ЦККП и его преобразованию в командный пункт системы контроля космического пространства.

На первом этапе, в 1974 году, для этого была обеспечена связь ЦККП с информационными средствами систем предупреждения о ракетном нападении (ПРН) и противоракетной обороны (ПРО). Зона контролируемого космического пространства резко расширилась - к 1976 г. ЦККП уже сопровождал более полутора тысяч космических объектов, что составляло 30% от их общего количества.

При этом значительно повысилась достоверность информации, формируемой системой ПРН, так как появилась возможность ведения полного каталога космических объектов, пролетающих над территорией страны, который позволил значительно снизить вероятность ложного предупреждения путем отбраковки траекторий полета снижающихся и сгорающих в плотных слоях атмосферы космических объектов.

Кроме того, появились реальные возможности своевременной и надежной выдачи соответствующих целеуказаний комплексу противокосмической обороны в целях перехвата космических аппаратов, атакующих территорию страны.

В дальнейшем степень контроля объектов, находящихся в космическом пространстве, непрерывно возрастала - к 1980 г. ЦККП получил возможность прогнозирования мест падения космических объектов и сопровождал более половины всех орбитальных объектов.

Тогда же, в 1980 году, было принято решение о дальнейшем развитии Системы ККП с поэтапным вводом в ее состав специализированных средств контроля космического пространства: оптико-электронных и радио-оптических комплексов распознавания космических объектов, а также средств пеленгации излучения космических аппаратов. Создание специализированных средств ККП позволило существенно улучшить оперативность и эффективность распознавания космических аппаратов.

Оптико-электронная станция из состава ОЭК «Окно»

В 1986 г. средствами СККП сопровождалось уже более 4 тысяч космических аппаратов и их элементов на высотах до 3500 км.

В 1988 г. было образовано соединение контроля космического пространства, призванное обеспечить оперативное управление всеми силами и средствами, позволяющими всеобъемлюще контролировать космическое пространство, и своевременно обнаружить начало военных действий в космосе.

Соединение ККП имеет в своем составе командный пункт, Центр контроля космического пространства, специализированные радиолокационные и оптико-электронные комплексы. На Центр контроля космического пространства возлагается задача непрерывного ведения Главного каталога космической обстановки и выдача оперативных данных о ней на главные командные пункты страны.

В 1999 году была поставлена в опытную эксплуатацию первая очередь оптико-электронного комплекса «Окно» (г. Нурек, Таджикистан). В 2000 году завершены испытания и сдана в эксплуатацию войскам первая очередь радиооптического комплекса «Крона» (ст. Зеленчукская, Карачаево-Черкесская Республика).

В настоящее время работы по совершенствованию Системы контроля космического пространства продолжаются.

Урок 45

КОСМИЧЕСКИЕ ВОЙСКА, ИХ СОСТАВ И ПРЕДНАЗНАЧЕНИЕ

Предмет: ОБЖ.

Модуль 3. Обеспечение военной безопасности государства.

Раздел 5. Основы обороны государства.

Глава 14. Виды и рода войск Вооружённых Сил Российской Федерации.

Урок №45. Космические войска, их состав и предназначение.

Дата проведения: «____» _____________ 20___ г.

Урок провёл: учитель ОБЖ Хаматгалеев Э. Р.

Цель: рассмотреть состав и предназначение Космических войск.

Ход уроков

    Организация класса.

Приветствие. Проверка списочного состава класса.

    Сообщение темы и цели урока.

    Актуализация знаний.

    Для выполнения каких боевых задач предназначены Воздушно-десантные войска?

    Какие боевые возможности Воздушно-десантных войск вы можете перечислить?

    Какие известные подразделения входят в состав Воздушно-десантных войск?

    Как вы понимаете девиз ВДВ «Никто, кроме нас!»? Поясните свой ответ.

    Проверка домашнего задания.

Заслушивание ответов нескольких учеников на домашнее задание (по выбору учителя).

    Работа над новым материалом.

Космические войска – это принципиально новый самостоятельный род войск, который предназначен для:

    вскрытия начала ракетного нападения на Российскую Федерацию и её союзников;

    борьбы с баллистическими ракетами противника, атакующими обороняемый район;

    поддержания в установленном составе орбитальных группировок космических аппаратов военного и двойного назначения и обеспечения применения космических аппаратов по целевому назначению;

    контроля космического пространства;

    обеспечения выполнения Федеральной космической программы России, программ международного сотрудничества и коммерческих космических программ.

В состав Космических войск входят: объединение ракетно-космической обороны (РКО), Государственные испытательные космодромы Министерства обороны Российской Федерации «Байконур», «Плесецк» и «Свободный», Главный испытательный центр испытаний и управления космическими средствами имени Г. С. Титова, управление по вводу средств РКО, военно-учебные заведения и части обеспечения. Объединение РКО включает соединения предупреждения о ракетном нападении, противоракетной обороны и контроля космического пространства.

СИЛЫ И СРЕДСТВА РАКЕТНО-КОСМИЧЕСКОЙ ОБОРОНЫ

На систему предупреждения о ракетном нападении (СПРН) возлагаются задачи получения и выдачи информации предупреждения о ракетном нападении на пункты государственного и военного управления, формирования необходимой информации для системы противоракетной обороны и выдачи данных о космических объектах на систему контроля космического пространства.

Система противоракетной обороны осуществляет обнаружение целей и поражение боевых блоков межконтинентальных баллистических ракет (МБР) противоракетами с исключением детонации их зарядов.

Система контроля космического пространства (ККП) является уникальной. Контролировать космос могут только две державы – Россия и США. В главном каталоге системы ККП Российской Федерации содержится информация почти о 9 тыс. космических объектов.

Силы и средства ККП во взаимодействии с информационными средствами систем ПРН, ПРО и другими информационными системами выполняют задачи контроля космического пространства и выдачи информации о космической обстановке на пункты управления государственного и военного руководства. Системой определяются характеристики и назначение всех космических аппаратов, а также состав орбитальных группировок космических систем России и иностранных государств с их распознаванием.

В условиях возрастания роли космического пространства в решении мирных и военных задач у системы ККП появляются новые задачи: информационное обеспечение поддержки реализации Россией своих прав по использованию космического пространства; информационное обеспечение противодействия средствам космической разведки, в том числе для сохранения мобильной группировки стратегических ядерных сил (СЯС); экологический мониторинг космического пространства; контроль за испытаниями и возможным развёртыванием элементов системы ПРО космического базирования.

Космические войска оснащены ракетами-носителями, командно-измерительными системами, радиолокационными станциями, оптико-электронными комплексами.

ГОСУДАРСТВЕННЫЕ ИСПЫТАТЕЛЬНЫЕ КОСМОДРОМЫ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

Космодром «Байконур» основан в июне 1955 г. Отсюда 12 апреля 1961 г. стартовал первый космонавт планеты Ю. А. Гагарин.

После распада СССР космодром стал собственностью Республики Казахстан. В соответствии с Договором аренды комплекса «Байконур» между Правительствами Российской Федерации и Республикой Казахстан 1994 г. его использование осуществляется Российской Федерацией. Срок аренды комплекса «Байконур» - 20 лет с возможностью его дальнейшего продления.

Общая координация работ, проводимых на космодроме, возложена на Министерство обороны Российской Федерации (Космические войска), а реализация Федеральной космической программы России и программ международного сотрудничества – на Российское авиационно-космическое агентство.

Космодром «Плесецк» является самым северным космодромом в мире (он находится в Архангельской области) и осуществляет запуски космических аппаратов по программам военного, социально-экономического и научного назначения, а также по программам международного сотрудничества.

Космодром «Свободный» создан в соответствии с Указом Президента Российской Федерации Б. Н. Ельцина 1 марта 1996 г.

Благоприятное географическое расположение космодрома «Свободный» в Амурской области позволяет осуществлять запуски космических аппаратов в широком диапазоне наклонений орбит, в том числе на полярные и солнечно-синхронные, более эффективно использовать энергетические возможности ракет-носителей.

    Выводы.

    Космические войска – новый род войск, входящий в Вооружённые Силы Российской Федерации.

    Космические войска обеспечивают контроль космического пространства.

    В основные задачи Космических войск входит уничтожение баллистических ракет противника, атакующих объекты и войска в обороняемых районах.

    Космические войска выполняют разведывательные функции, собирая необходимую информацию для противоракетной обороны нашей страны.

    Вопросы.

    В чём состоит основное предназначение Космических войск?

    Какие космодромы Министерства обороны Российской Федерации вы можете назвать?

    Что входит в задачи Космических войск?

    Почему контроль космического пространства с использованием сил и средств Космических войск так важен для Российской Федерации? Обоснуйте свой ответ.

    Задания.

    Подготовьте сообщение о силах и средствах ракетно-космической обороны страны.

    Используя специальную литературу, подготовьте сообщение об одном из космодромов, используемых Космическими войсками Российской Федерации.

    Напишите реферат об одном из советских или российских лётчиков-космонавтов.

    Дополнительные материалы к §45.

Главный испытательный центр испытаний и управления космическими средствами им. Г. С. Титова

Отправной точкой создания Главного центра испытаний и управления космическими средствами им. Г. С. Титова (ГИЦИУ КС) по праву можно считать Постановление Совета министров СССР от 30 января 1956 г., определившее программу разработки и запусков первых искусственных спутников Земли.

Специалисты ГИЦИУ КС и подчинённых воинских частей совместно с Центром управления полётами обеспечивают все космические программы, начиная с запуска первого искусственного спутника Земли 4 октября 1957 г. Люди в погонах отвечают за состояние практически всех отечественных орбитальных систем – военных, научных, пилотируемых и др. Космическая служба Земли – это спутники связи, навигации, метеопрогноза, картографии, телевещания, ретрансляции и др.

Силы и средства ГИЦИУ КС дислоцированы практически на всей территории Российской Федерации – от Санкт-Петербурга до Камчатки.

Ракета на полигоне

    Окончание урока.

    Домашнее задание. Подготовить к пересказу §45 «Космические войска, их состав и предназначение»; выполнить задания 1-3 (рубрика «Задания», с. 236).

    Выставление и комментирование оценок.