Как используют изотопы в медицине. Изотопы. Виды радиоактивных излучений

Изотопы – это такие вещества, которые имеют одинаковое число протонов в ядре атома, но разное число нейтронов.

Изотопы отсутствуют в таблице Менделеева, потому что их свойства почти ничем не отличаются от свойств основного вещества. На примере такого химического элемента как кислород поясним – если в ядре атома кислорода в результате ядерной реакции добавится один или несколько нейтронов, то кислород при этом так и останется кислородом, только это будет уже изотоп кислорода.

А если к ядру атома кислорода прибавить еще один протон, то получим не изотоп, а другой химический элемент. Например, фтор – если прибавим один протон, или неон, если прибавим два протона.

На данный момент науке известно более двух тысяч изотопов.

Изотопы бывают радиоактивными, то есть ядра их атомов нестабильны и испускают частицы, а значит распадаются. Но некоторые радиоактивные изотопы настолько медленно распадаются (миллионы лет), что их тоже можно считать стабильными.

Такой химический элемент как водород имеет два изотопа, и оба они имеют свои названия. Ни один другой химический элемент не имеет изотопы с собственным названием.

Обычный водород, или еще его называют протием.

Изотоп водорода с двумя нейтронами, его называют дейтерием и обозначают буквой D. Дейтерий образует тяжелую воду D 2 O.

Изотоп водорода с тремя нейтронами, его называют тритием и обозначают буквой Т.

Ученые выяснили, что в каждом химическом элементе, которые встречается в природе, присутствует также в некотором количестве и его изотоп. Например, водород всегда содержит в себе около 0,017% дейтерия.

Применение изотопов в медицине.

С помощью изотопов был изучен процесс обмена веществ в организмах. Исследование проводилось с помощью «меченых атомов». Суть метода состоит в том, что в организм вводится небольшая, безопасная для жизнедеятельности, доза изотопов. Далее по их передвижению вместе с основным веществом изучаются процессы обмена веществ. В медицине изотопы используются также для постановки диагноза и для терапии.

Например, для исследования кровообращения используется радиоактивный изотоп натрия, а для определения базедовой болезни, где необходимо следить за отложениями йода в щитовидной железе, используют радиоактивный йод. В этом случае метод диагностики и терапии совпадают, поскольку большие дозы радиоактивного йода способны частично разрушить аномально развивающиеся ткани. А для лечения раковых заболеваний используется жесткое гамма-излучение кобальта, которое еще называют кобальтовой пушкой.

«Как выстроить эффективную систему преподавания»
Подпишись прямо сейчас – введи свой e-mail

Содержание статьи

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди , который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов.

Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов.

Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтеза. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.

Владимир Жданов

Изотопы, особенно радиоактивные, имеют многочисленные применения. В табл. 1.13 указаны отдельные примеры некоторых промышленных применений изотопов. Каждая методика, упоминаемая в этой таблице, используется также и в других отраслях промышленности. Например, методика определения утечки вещества с помощью радиоизотопов используется: в производстве напитков для определения утечки из накопительных баков и трубопроводов; в строительстве инженерных сооружений для

Таблица 1.13. Некоторые применения радиоизотопов

определения утечки из подземных водоводов; в энергетической промышленности для определения утечки из теплообменников на электростанциях; в нефтяной промышленности для определения утечки из подземных нефтепроводов; в службе контроля сточных и канализационных вод для определения утечки из магистральных коллекторов.

Изотопы также широко используются в научных исследованиях. В частности, они используются для определения механизмов химических реакций. В качестве примера укажем использование воды, меченной устойчивым изотопом кислорода 180, для изучения гидролиза сложных эфиров, подобных этилацетату (см. также разд. 19.3). С использованием масс-спектрометрии для обнаружения изотопа 180 было установлено, что при гидролизе атом кислорода из молекулы воды переходит в уксусную кислоту, а не в этанол

Радиоизотопы широко используются в роли меченых атомов в биологических исследованиях. Для того чтобы прослеживать метаболические пути в живых системах, используют радиоизотопы углерод-14, тритий, фосфор-32 и сера-35. Например, усвоение фосфора растениями из обработанной удобрениями почвы можно проследить, пользуясь удобрениями, которые содержат примесь фосфора-32.

Радиационная терапия.

Ионизирующее излучение способно разрушать живые ткани. Ткани злокачественных опухолей более чувствительны к облучению, чем здоровые ткани. Это позволяет лечить раковые заболевания при помощи -лучей, испускаемых из источника, в качестве которого используется радиоактивный изотоп кобальт-60. Излучение направляют на пораженный опухолью участок тела больного; сеанс лечения длится несколько минут и повторяется ежедневно в течение 2-6 недель. Во время сеанса все остальные части тела больного должны быть тщательно закрыты непроницаемым для излучения материалом, чтобы предотвратить разрушение здоровых тканей.

Определение возраста образцов при помощи радиоуглерода.

Небольшая часть того диоксида углерода, который находится в атмосфере, содержит радиоактивный изотоп . Растения поглощают этот изотоп в процессе фотосинтеза. Поэтому ткани всех

растений и животных также содержат этот изотоп. Живые ткани обладают постоянным уровнем радиоактивности, потому что его убывание из-за радиоактивного распада компенсируется постоянным поступлением радиоуглерода из атмосферы. Однако, как только наступает смерть растения или животного, прекращается поступление радиоуглерода в его ткани. Это приводит к постепенному снижению уровня радиоактивности мертвых тканей.

Радиоактивность изотопа обусловлена -распадом

Радиоуглеродный метод геохронологии разработал в 1946 г. У.Ф. Либби, получивший за него Нобелевскую премию по химии в 1960 г. Этот метод широко используется в настоящее время археологами, антропологами и геологами для датировки образцов, имеющих возраст вплоть до 35000 лет. Точность этого метода приблизительно 300 лет. Наилучшие результаты получаются при определении возраста шерсти, семян, ракушек и костей. Для определения возраста образца измеряют активность p-излучения (число распадов в минуту) в расчете на 1 г содержащегося в нем углерода. Это позволяет установить возраст образца при помощи кривой радиоактивного распада для изотопа .

Период полураспада для равен 5700 лет. Живая ткань, находящаяся в активном контакте с атмосферой, имеет активность 15,3 расп./мин в расчете на 1 г углерода. По этим данным необходимо:

а) определить постоянную распада для

б) построить кривую распада для

в) вычислить возраст Кратер Лейк Орегон в США), имеющего вулканическое происхождение. Установлено, что дерево, перевернутое во время

извержения, в результате которого появилось озеро, имеет -активность 6,5 расп./мин в расчете на 1 г углерода.

а) Постоянную распада можно найти из уравнения

б) Кривая распада представляет собой график зависимости активности от времени. Данные, необходимые для построения этой кривой, можно вычислить, зная период полураспада и начальную активность образца (активность живой ткани); эти данные приведены в табл. 1.14. Кривая распада показана на рис. 1.32.

в) Возраст озера можно определить при помощи кривой распада (см. штриховые линии на рис. 1.32). Этот возраст равен 7000 лет.

Таблица 1.14. Данные для построения кривой радиоактивного распада углерода, используемой при определении возраста образцов

Рис. 1.32. Кривая радиоактивного распада изотопа

Многие горные породы на Земле и Луне содержат радиоизотопы с периодами полураспада порядка лет. Измеряя и сравнивая относительное содержание этих радиоизотопов с относительным содержанием продуктов их распада в образцах таких горных порол, можно установить их возраст. Три наиболее важных метода геохронологии основаны на определении относительного содержания изотопов (период полураспада лет). (период полураспада лет) и (период полураспада лет).

Метод датировки по калию и аргону.

Такие минералы, как слюда и некоторые разновидности полевого шпата, содержат небольшое количество радиоизотопа калий-40. Он распадается, претерпевая электронный захват и превращаясь в аргон-40:

Возраст образца определяется на основе вычислений, в которых используются данные об относительном содержании в образце калия-40 по сравнению с аргоном-40.

Метод датировки по рубидию и стронцию.

Некоторые из наиболее древних горных пород на Земле, например граниты с западного побережья Гренландии, содержат рубидий. Приблизительно третья часть всех атомов рубидия приходится на долю радиоактивного рубидия-87. Этот радиоизотоп распадается, превращаясь в устойчивый изотоп стронций-87. Вычисления, основанные на использовании данных об относительном содержании в образцах изотопов рубидия и стронция, позволяют устанавливать возраст таких горных пород.

Метод датировки по урану и свинцу.

Изотопы урана распадаются, превращаясь в изотопы свинца. Возраст таких минералов, как апатиты, которые содержат примеси урана, можно определять, сравнивая содержание в их образцах определенных изотопов урана и свинца.

Все три описанных метода использовались для датировки земных горных пород. Полученные в результате данные указывают, что возраст Земли равен лет. Указанные методы использовались также для определения возраста лунных горных пород, доставленных на Землю из космических экспедиций. Возраст этих пород составляет от 3,2 до лет.

Ушакова А.А. 1

Гришина В.С. 1

1 Муниципальное казенное общеобразовательное учреждение городского округа Заречный «Средняя общеобразовательная школа № 4»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования. Я считаю, что моя исследовательская работа актуальна именно сегодня. Появившаяся в конце XIX века ядерная физика, бурное развитие которой привело к созданию атомного и водородного оружия, уже в середине XX века заставила общественность во весь голос заговорить об угрозе самого существования человечества. Но ведь энергию деления ядра и радиоактивность можно использовать и для созидания. Например, радиоизотопы используются в различных производствах, при научных исследованиях и в медицине.

Промышленное использование включает дефектоскопию и процессы контроля в металлургической (литейной), бумажной, химической промышленности и в дорожном строительстве.

В современной медицине получило развитие новое направление - ядерная медицина, использующее радиоактивные вещества и свойства атомного ядра для диагностики и терапии в различных областях научной и практической медицины. Ядерная медицина обогатилась новыми методами изучения жизненных процессов, диагностики и лечения болезней. На ее нужды расходуется более 50% годового производства радионуклидов во всем мире. Радионуклиды применяются в ядерной медицине в основном в виде радиофармацевтических препаратов (РФП).

Люди должны понимать, что радиоактивное излучение - это не есть что-то невероятно опасное и непостижимое, а наоборот, чем больше ведется изучения радиоактивных явлений, тем более осознанно с ними можно обращаться, используя их свойства на благо человека.

Проблема исследования. Обучающиеся старших классов имеют недостаточные знания о радиоизотопах, их применении в различных областях жизнедеятельности человека.

Предмет исследования. Радиоактивные изотопы и область их применения.

Цель исследования. Выяснить, что представляют собой радиоактивные изотопы, какими свойствами они обладают и как можно их использовать на благо человека.

В связи с поставленной целью предстояло решить следующие задачи:

Расширить знания о строении ядра атома, явлении радиоактивности, радиоактивных изотопах.

Узнать в специальной литературе и интернет-ресурсах современное состояние дел, успехов и проблем в производстве изотопов.

Найти информацию о деятельности АО «Институт реакторных материалов» ГО Заречный» по производству радиоизотопов и их применению в различных сферах жизни человека.

Организовать встречу с сотрудником ОА «ИРМ» для методической консультации по данной теме.

Подготовить и провести классный час «Радиоактивные изотопы на службе у человека» для обучающихся 8-11 классов МКОУ «Средняя общеобразовательная школа № 4».

Провести исследование среди учащихся 8-11 классов МКОУ «Средняя общеобразовательная школа № 4» с целью выявления данных о том, какими знаниями владеет подрастающее поколение по темам «Радиоактивность. Радиоактивные изотопы», «Радионуклидная продукция».

Показать необходимость использования радиоизотопов в различных отраслях деятельности человека.

Практическая значимость исследования. Данный исследовательский проект можно использовать на уроках химии и физики по теме «Радиоактивность. Изотопы. Радиоактивные изотопы».

Структура и объем работы. Исследовательский проект состоит из введения, 7 глав, заключения, списка используемых источников, приложений № 1,2,3,4,5. В тексте проекта содержится 3 рисунка.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

1. Понятие «изотопы».

Изото́пы (отдр.-греч.Ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов(и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа (см. рис.1.1.). Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Д.И. Менделеева.

Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12 C, 222 Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например,дейтерий,актинон).На март 2017 года известно 3437 изотопов всех элементов.

По количеству открытых изотопов первое место занимают США (1237), затем идут Германия (558), Великобритания (299), СССР/Россия (247) и Франция (217). За 10 лет (2006—2015 годы включительно) в среднем физики открывали в год 27 изотопов. Общее количество учёных, являвшихся авторами или соавторами открытия какого-либо изотопа, составляет 3598 человек.

2. Понятие «Радионуклиды».

Нуклиды, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных нуклидов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). Все нуклиды, имеющие зарядовое число, равное 43 или 61 или большее 82, радиоактивны; соответствующие элементы называются радиоактивными элементами. Существуют радионуклиды и с другими зарядовыми числами (от 1 до 42, от 44 до 60 и от 62 до 82). Радионуклиды отличаются между собой энергией излучения, периодом полураспада.

Радиоактивные изотопы, встречающиеся в природе, называются естественными, например, 40 K. В 1934 году французские ученые Ирен и Фредерик Жолио-Кюри обнаружили, что радиоактивные изотопы могут быть созданы искусственным путем в результате ядерных реакций. Такие изотопы назвали искусственными.

Для получения искусственных радиоактивных изотопов обычно используют ядерные реакторы и ускорители элементарных частиц. Впоследствии был получены искусственные изотопы всех химических элементов. Всего в настоящее время известно примерно 3000 радиоактивных изотопов, причем 300 из них - естественные.

3. Торговля радиоактивными изотопами.

Не менее половины изотопов имеют медицинское назначение (остальное — промышленность и научные исследования).

Мировой экспорт и импорт искусственными радиоактивными изотопами (ИРИ) составлял последние 3 года чуть более 1 млрд долларов в год. Список экспортеров возглавляют Канада, США, Нидерланды, Бельгия и Германия. В списке импортеров лидируют США, Япония, Германия, Англия и Китай.

России сегодня принадлежит 6% мирового экспорта и 1% импорта. Динамика международной торговли ИРИ России показана на рисунке (приложение № 1). Хорошо виден рост экспорта за 15 лет — более чем втрое! Импорт же в последние годы стабилен.

Главное направление российского экспорта ИРИ — Запад, с большим отрывом лидирует Великобритания: около 50%. На втором месте — США, на третьем — Германия, четвертый Китай.

Россия закупает за рубежом главным образом радиофармацевтические препараты и источники излучения для медтехники; основные поставщики — Германия и США.

4. Применение радиоактивных изотопов.

В настоящее время радиоактивные изотопы широко применяют в различных сферах научной и практической деятельности: технике, медицине, сельском хозяйстве, средствах связи, военной области и в некоторых других. При этом часто используют так называемый метод меченых атомов.

4.1. Применение радиоизотопов в медицине.

Изотопы, в первую очередь радиоактивные, широко применяются в современной медицинской практике.

В изотопной диагностике в мире и в России все большее значение имеет позитронно-эмиссионная томография (ПЭТ).

Рис. 4.1.1.Оборудование для позитронной эмиссионной томографии

Поэтому растет потребность не только в традиционных радиоизотопах, таких как 11 С, 13 N, 15 O, 18 F, но и генераторных изотопах 68 Ga и 82 Rb, а также перспективных для новейшей диагностической технологии, совмещающей позитронно-эмиссионную и компьютерную томографию, изотопах 38 K, 45 Ti, 62 Cu, 64 Cu, 75 Br, 76 Br, 94m Tc и 124 I.

Развитие получают и терапевтические методы на основе радиоактивных изотопов, например, лучевая терапия открытыми источниками радионуклидов, особенно эффективная при борьбе со злокачественными лимфомами, раком щитовидной железы и др.

131 I был и продолжает оставаться наиболее широко используемым терапевтическим изотопом (ежегодно в Европе — более 90000 ГБк (один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад), в России — около 2000 ГБк). Йодотерапия не имеет альтернативы при тяжелых формах рака щитовидной железы.

Радиоиммунотерапия на начальных этапах своего становления и развития также проводилась с использованием препаратов 131 I, но в последнее десятилетие резко возрос интерес к 90 Y.

Одним из направлений применения микроисточников (брахитерапия) с 103 Pd или 125 I в последние 10-15 лет стало лечение рака предстательной железы и некоторых других онкопатологий. В настоящее время перспективным изотопом для брахитерапии является 131 Cs.

В радиофармацевтике диагностического и терапевтического назначения наметился сдвиг в сторону короткоживущих радиоизотопов. Наряду с применением стандартных медицинских изотопов 198 Au, 131 I, 125 I, 203 Hg, 197 Hg и др. все чаще применяют их заменители с меньшим периодом полураспада. Все большее признание в исследовательской деятельности и клинической практике получает фармацевтика на основе короткоживущих 99m Tc, 123 I, 13 N, 15 O, 11 C, 18 F, 77 Br, 68 Ga, 81m Kr и др.

4.2. Применение радиоизотопов в промышленности.

Не менее обширны применения радиоактивных изотопов в промышленности и промышленных исследованиях. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

4.3. Применение радиоизотопов в сельском хозяйстве.

Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили «меченые атомы» в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 32 P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.

4.4. Применение радиоизотопов в археологии и геологии.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом. Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

5. Производство изотопов в АО «Институт реакторных материалов» ГО Заречный.

Аргон-37

В 2003-2004гг. АО «ИРМ» и Белоярская АЭС в коллаборации с Академией наук, ФЭИ и другими предприятиями создали источник нейтрино. Аргон-37 использовался как искусственный источник нейтрино для калибровки галлиевых детекторов Баксанской обсерватории (Кабардино-Балкария). Изучая солнечные нейтрино с помощью детекторов, откалиброванных с применением аргона-37, баксанские астрофизики сделали научное открытие мирового значения. Таким образом, сотрудники АО «ИРМ» и Белоярской АЭС внесли весомый вклад в науку о звёздных процессах мироздания, которые оказывают существенное влияние на развитие человеческой цивилизации.

40 Ca + 1 n = 37 Ar + 4 He

В ИРМ была разработана, изготовлена и смонтирована установка растворения облучённой окиси кальция и экстракции 37 Ar с его последующей очисткой. Была также разработана конструкция газового источника, технология его заполнения и измерение его активности.

Рис. 5.1. Галлий-германиевый нейтринный телескоп ИЯИ РАН.

Фрагмент Баксанской Нейтринной обсерватории находящейся в горном массиве на глубине более 2 км.

Углерод-14

В настоящее время АО «ИРМ» нарабатывает углерод-14 и производит препараты на его основе.

14 N + 1 n = 14 C + 1 p

Данная продукция используется как непосредственно в ядерной медицине, так и фармакологии при создании и тестировании новых фармацевтических субстанций, где роль этого изотопа трудно переоценить. Практически все фармацевтические субстанции - это более сложные органические соединения синтезированные, из некоторого набора исходных углеродных соединений - прекурсоров. «Пометив» углеродом-14 те или иные исходные части синтезированной сложной молекулы, можно проследить ее фармокинетику в организме. Такие органические соединения - прекурсоры меченые углеродом-14 производятся в АО «ИРМ» и поставляются в американские и европейские лаборатории.

Для ядерной медицины АО «ИРМ» производит меченую углеродом-14 мочевину, которую поставляет в ФГУП «НИФХИ им. Л.Я.Карпова», где на ее основе изготавливаются капсулы «Урекапс». Данный радиофармпрепарат используется для проведения дыхательных тестов на Helicobacter Pillory. Для получения 14 C разработана и внедрена наиболее эффективная технология, использующая в качестве материала мишени нитрид алюминия. На регулярной основе выпускается ряд органических соединений, меченных 14 C, которые являются прекурсорами при проведении синтезов сложных радиохимических соединений. Эффективность выделения 14 C из AlN превышает 97%.

Цезий-131

Кроме того для нужд ядерной медицины в АО «ИРМ» организовано производство из природного бария радиоизотопа 131 Cs с радиохимической чистотой не менее 99,99%.Чистота продукта существенно превосходит зарубежные аналоги.

131 Cs образуется при распаде 131 Ba, получаемого нейтронным облучением соединений бария:

130 Ba + 1 n = 131 Ba + γ

131 Ba → ЭЗ 11.5 дн. 131 Cs

Оптимальное сочетание периода полураспада и энергии излучения делают 131 Cs перспективным радиоизотопом для брахитерапии злокачественных заболеваний предстательной железы, легкого, молочной железы и т.д. Введение его в клиническую практику рассматривается как одно из наиболее значимых достижений в брахитерапии.

Иридий-192

На предприятии организована наработка 192 Ir из природного и изотопно-обогащённого иридия.

191 Ir+ 1 n = 192 Ir + γ

В качестве материала мишени используется металлический иридий в виде дисков различного типоразмера. Применяемая схема облучения и конструкция облучательного устройства позволяет нарабатывать на среднепоточном ядерном реакторе 192 Ir с удельной активностью достаточной для использования в дефектоскопах при неразрушающих методах контроля в науке и технике, а также в ядерной медицине для высокодозовой брахитерапии.

Лютеций-177

Наработка 177 Lu проходит по реакции:

176 Lu+ 1 n = 177 Lu + γ

Привлекательность радионуклида 177 Lu для современной ядерной медицины определяется относительно низкой энергией бета-излучения и, соответственно, невысокой проникающей способностью в мягких тканях что позволяет использовать 177 Lu в терапии опухолей небольшого размера, а также при лечении паталогических изменений костных тканей.

Период полураспада Lu (6,65 сут.) позволяет осуществлять доставку данного радионуклида на достаточно большие расстояния от места его производства.

Более 99% радиоизотопной продукции АО «ИРМ» экспортирует в США и страны Западной Европы (Англия, Германия, Голландия). 40% радиоизотопной продукции выпускается для нужд промышленности, 60% - ядерной медицины и фармацевтической промышленности. АО«ИРМ» не входит в число крупнейших экспортеров радиоизотопной продукции на международном рынке. Но по оценкам экспертов, по эффективности организации радиоизотопного производства АО «ИРМ» занимает лидирующие позиции в ГК «Росатом».

6. Проведение классного часа «Радиоактивные изотопы на службе у человека»

Работая над данным проектом, овладев теоретическим материалом по теме «Изотопы. Практическое применение радиоизотопов в жизни человека», автору проекта стало интересно: Изучают ли данную тему в школе? Что знают обучающиеся о радионуклидной продукции и ее использовании в различных сферах жизни человека? В связи с тем, что на изучение данной темы в школе отводится 1 урок, автор проекта подготовила классный час, посвященный радиоактивным изотопам.

23 января 2018 года были проведены тематические классные часы «Радиоактивные изотопы на службе у человека», где была представлена информация о радионуклидной продукции Института реакторных материалов ГО Заречный, а также перспективах развития данного направления деятельности АО «ИРМ». На классных часах присутствовали 128 учеников 8-11 классов МКОУ ГО Заречный «Средняя общеобразовательная школа № 4». По окончании мероприятия был проведен социологический опрос (приложение № 2,3).

7. Социологический опрос.

С целью выявления данных о том, какими знаниями владеет подрастающее поколение по темам «Радиоактивность. Радиоактивные изотопы», «Радионуклидная продукция», автором проекта было проведено социологическое исследование, в котором приняли участие 128 обучающихся 8-11 классов МКОУ «Средняя общеобразовательная школа № 4» (приложение № 4,5).

На вопрос «Много ли Вы знаете о радиоактивных изотопах (нуклидах)?» 97% обучающихся ответили отрицательно. Это говорит о том, что данная тема изучается недостаточно полно. Обучающиеся знают лишь основной теоретический материал.

67% обучающихся 8-11 классов заинтересовались материалом, предложенным на классном часе. Обучающиеся предложили изучить данную тему подробнее на одном из факультативных занятий по предмету «Химия».

45% респондентов высказались за увеличение количества уроков по теме «Радиация. Радиоактивность. Радиоактивные изотопы» на уроках предмета «Физика».

95% обучающихся считают, что радиация - главный источник большинства онкологических заболеваний. В связи с этим необходимо вести разъяснительную работу о значении радиации в жизни человека и ее последствиях, объяснять обучающимся, что не только радиация является причиной онкологических заболеваний, но и последствия неправильного образа жизни, вредных привычек, а также вредные условия труда.

97% обучающихся 8-11 классов не знали, что такое «радиофармпрепараты», каким образом они используются для диагностики и лечения онкозаболеваний.

93% обучающихся не имели представления о радионуклидной продукции, выпускаемой в Институте реакторных материалов ГО Заречный. Тем более обучающиеся не знали, для каких целей их производят, и кто является покупателем радиоизотопов ИРМ.

Таким образом, обобщая данные анкетирования, можно сказать, что классный час по теме «Радиоактивные изотопы на службе у человека» способствовал расширению знаний обучающихся о строении атома, истории создания искусственных изотопов, систематизации знаний о явлении радиоактивности, применении радионуклидов в различных сферах жизни человека. Благодаря проведенному классному часу обучающиеся более подробно узнали о направлениях деятельности АО «ИРМ» ГО Заречный. Некоторые ребята собираются в дальнейшем связать свою жизнь с атомной отраслью, и теперь они имеют более полное представление о деятельности одного из ведущих предприятий нашего города.

ЗАКЛЮЧЕНИЕ

Радиоактивные изотопы служат человеку во многих сферах его жизнедеятельности. Это еще раз доказывает, что радиацию можно использовать во благо человечества, помогая людям.

За ядерной медициной стоит будущее. Знание законов физики и химии двигает науку вперед. Люди должны знать о радиоактивных изотопах, радионуклидной продукции, о той пользе, которую они приносят.

Катастрофа на Чернобыльской АЭС, а затем распад СССР привели к негативным последствиям, закрывались научно-исследовательские институты, уезжали за границу лучшие умы России. В настоящее время производство радиоактивных изотопов - одно из важнейших направлений развития отрасли атомной энергетики.

Проанализировав большое количество материалов научной литературы и Интернет-ресурсов, на основе проведенного исследования можно сделать выводы:

1.Доказано, что радиоактивные изотопы служат человеку в медицине, сельском хозяйстве, науке, промышленности, археологии и геологии.

2.Выявлено, что АО «Институт реакторных материалов» по эффективности организации радиоизотопного производства занимает лидирующие позиции в ГК «Росатом».

3. В рамках работы над исследовательским проектом автор участвовала в разработке и подготовке классного часа «Радиоактивные изотопы на службе у человека», где были представлены материалы данного проекта, подготовлена презентация.

4. Проведен социологический опрос обучающихся 8-11 классов.Обучающиеся интересовались производством радионуклидной продукции, выпускаемой АО «ИРМ», задавали много вопросов по теме.Думаю, что теперь они имеют представление о направлениях деятельности данного предприятия.

5. Выявлена необходимость проведения разяснительной работы среди обучающихся 8-11 классов о значении радиации в жизни человека и ее последствиях.

Поставленные передо мной задачи были решены, цель достигнута.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Давыдов А.С., Теория атомного ядра. - М., 1958.

Маргулова Т.Х. Атомная энергетика сегодня и завтра. - М.: Высшая школа, 2016.

Мурин А.Н., Введение в радиоактивность. - Л., 1955.

Современная медицинская энциклопедия/Русское издание под общей ред. Г.Б.Федосеева. - СПб.:Норинт, 2014.

Учение о радиоактивности. История и современность. М. Наука, 2003.

Фурман В.И. Ядерные излучения в науке и технике. М. Наука, 1984.

Холл Э.Дж. Радиация и жизнь/Пер.с англ. - М.: Медицина, 2012.

Энциклопедия для детей. Физика. Т.16/ Под ред. В.А. Володина. - М.: Аванта+, 2000.

CD ROM «Большая энциклопедия Кирилла и Мефодия», 2015.

Интернет-ресурсы:

https://ru.wikipedia.org/wiki/Изотопы

https://ru.wikipedia.org/wiki/Радиоактивные_изотопы

https://infourok.ru/videouroki/413

http://irm-atom.ru

Приложение №1

Схема Импорта и экспорта искусственных радиоактивных изотопов изРоссии в 1998-2014 гг., $ млн.

Приложение№2

Классный час «Радиоактивные изотопы на службе у человека»

Анкета Приложение № 4

Дорогой друг! Мы предлагаем тебе заполнить данную анкету для выявления отношения к радионуклидной продукции (изотопам):

1. Много ли вы знаете о радиоактивных изотопах (нуклидах)?

2. Заинтересованы ли вы в увеличении знаний по теме «Радиоактивные изотопы. Применение нуклидов в жизни человека»?

3. Считаете ли Вы, что количество уроков в школьной программе по теме «Изотопы. Радиоактивные изотопы» должно быть увеличено?

4. Считаете ли вы, что большинство онкологических заболеваний и генетических изменений связаны с радиацией?

5. Знаете ли Вы о том, что на основе радиоактивных изотопов производятся радиофармпрепараты, которые сегодня активно используют при лечении онкологических заболеваний?

знал ранее

теперь знаю

6. Знаете ли Вы, что на территории ГО Заречный в институте реакторных материалов производят радионуклидную продукцию и успешно реализуют ее на мировом рынке?

Приложение № 5

Социологическое исследование учащихся МКОУ «Средняя

общеобразовательная школа № 4»

Применение радиоактивных изотопов в промышленности, науке и сельском хозяйстве (по данным печати) // Атомная энергия. Том 2, вып. 1. - 1957. - С. 85-88.

ПРИМЕНЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ В ПРОМЫШЛЕННОСТИ, НАУКЕ И СЕЛЬСКОМ ХОЗЯЙСТВЕ

(ПО ДАННЫМ ПЕЧАТИ)

Черная металлургия

На Сталинском металлургическом заводе при помощи радиокобальта, заключенного в небольшом контейнере, производили просвечивание сварных швов кожуха доменной печи непосредственно в процессе ее монтажа, т. е. в условиях полной невозможности рентгеносъемки. Применяя подобные контейнеры, дефектоскописты обнаруживают внутренние дефекты в стенках паровых котлов, труб газопроводов и т. д.

Продолжительность плавки в мартеновских печах и очищение стали от серы и фосфора на ранней стадии плавки во многом зависят от порядка завалки и количества твердых материалов. С помощью радиоизотопов на ряде заводов «метят» шихтовые материалы-известь или руду-и по измерениям радиоактивности проб металла или шлака определяют скорость формирования активного шлака. Таким способом выявляется зависимость скорости растворения

известняка и руды от технологических факторов. Подобным же образом определяют скорость плавления скрапа. Для этого «метят» металлическую часть шихты. Такие исследования в настоящее время проводятся на заводах «Азовсталь», Сталинском, Макеевском и на Магнитогорском и Кузнецком комбинатах.

После выпуска стали на мартеновской печи далеко не всегда можно оценить состояние наварки подины путем обычного осмотра.Между тем необнаруженный дефект может привести к серьезной аварии в последующих плавках. Для предупреждения этого служат радиоизотопы. На заводе «Азов сталь» радиофосфор в магнезитовых ампулах закладывали в различных местах подины. Появление радиоактивности в пробах шлака, отбиравшихся по ходу плавок, указывало на разрушение наварки.

В области аналитической химии применительно к задачам металлургии наметилось два направления исследований с помощью радиоактивных изотопов. Первое-это проверка и уточнение обычных методов химического анализа, например на фосфор. В этом случае при растворении навески стали или руды добавляют малое количество радиофосфора. По ходу анализа, на различных его стадиях, определяется интенсивность радиоактивного излучения проб раствора. При отсутствии потерь сумма радиоактивностей растворов, взятых на всех стадиях анализа, должна быть равной радиоактивности исходного раствора.

Второе направление-это разработка методов экспресс-анализа стали и шлака на какой-либо один, наиболее важный при данной технологии элемент путем введения радиоактивных изотопов непосредственно в сталеплавильные печи. Так, для технологии передела чугуна с высоким содержанием фосфора на заводе «Азовсталь» разработан метод экспрессного определения пятиокиси фосфора в шлаках. Установлено, что при расходе 0,04-0,05 мкюри радиоактивного изотопа фосфора на тонну металла достигается достаточная точность анализа при значительно меньшей его продолжительности по сравнению с анализом химическим. Этот метод позволяет контролировать шлаковый режим плавки и более точно сортировать шлак как удобрение. Подобный метод разработан и для определения фосфора в металле по ходу продувки передельного чугуна в конвертере. Он может с успехом применяться при отработке новой технологии металлургического передела и в исследованиях, где быстрота определения содержания фосфора в металле или шлаке влияет на ход процесса. (Промышленно-экономическая газета, 9 сент. 1956 г.)

В борьбе за технический прогресс Металлурги Украины все шире применяют меченые атомы радиоактивных элементов. С помощью радиоактивного кобальта без остановки домны определяется состояние ее стенок, выложенных из огнеупорного кирпича.

Пользуясь радиоактивными изотопами, мартеновцы устанавливают, с какой скоростью происходит кристаллизация стальных слитков, определяют содержание фосфора в мартеновском шлаке во много раз быстрее, чем прежде, наблюдают за процессом шлакообразования, фиксируют момент окончания процесса расплавления железной руды и известняка во время плавки.

Пользуясь мечеными атомами, металлурги определяют содержание в руде кремнезема в несколько раз быстрее, чем химическим методом. Широко применяются радиоактивные изотопы для определения мощности и характера залегания пластов железной руды и для управления рядом производственных процессов на дробильно-сортировочных и обогатительных фабриках. (Правда Украины, 4 авг. 1956 г.)

#На Запорожском заводе «Днепроспецсталь» вступила в строй лаборатория физических методов исследования, оборудованная новейшей аппаратурой. В этой лаборатории проводятся исследования процесса выплавки электростали радиоактивными изотопами. В частности, с помощью радиоактивного кальция изучается причина загрязнения шарикоподшипниковой стали печным шлаком. (Правда, 21 сент. 1956 г.)

Машиностроение

Исследования, проведенные в Научно-исследовательском институте HAT И, показывают, что, только применяя радиоактивные изотопы, можно было установить влияние смазки, мощности двигателя, числа оборотов коленчатого вала, запыленности воздуха, перерыва в работе (испытания) на скорость износа двигателя, определить перенос металла с одной трущейся поверхности на другую. Установлено, например, что уменьшение нагрузки не приводит к резкому сокращению скорости изнашивания деталей.

С помощью радиоактивных изотопов можно измерять износ изделий с точностью до одной десятимиллионной грамма.

Опыты, проведенные в Институте машиностроения Академии наук СССР и в других организациях, дали интересные результаты. Выяснилось, что с помощью радиоактивных изотопов можно глубоко и точно изучать явления износа инструмента, не прекращая процесса резания. В частности, можно устанавливать зависимость износа от скорости подачи, глубины резания, времени, смазывающе-охла- ждающих жидкостей и обрабатываемого материала.

Можно также установить, как распределяются продукты износа резца при разных условиях резания, сколько их переходит в стружку, изделие и смазывающе-охлаждающую жидкость, сколько отделяется в виде пыли. Все это имеет большое значение при определении режимов резания. (Промышленно-экономическая газета, 26 октября 1956 г.)

Около пяти лет на заводе транспортного машиностроения существует лаборатория радиоактивных изотопов.

Среди вопросов, решаемых лабораторией, следует назвать определение кальция в шлаке по ходу плавки в кислой электродуговой печи, износа некоторых подшипниковых сплавов, идущих на тепловоз ТЭ-3. Проводятся исследования влияния на износ шестерен термической обработки, сорта смазки и чистоты поверхности, распределения легирующих элементов в стали в зависимости от скорости охлаждения и т. п. (Красное Знамя, г. Харьков, 7 окт. 1956 г.)

Нефтяная промышленность

В Арчединском нефтепромысловом управлении широко применяют радиокароттаж. Он вошел в обязательный комплекс измерительных работ, проводимых по скважинам. Радиоактивные изотопы используются при выявлении негерметичности эксплуатационных колонн. Так, с помощью изотопа кобальта была определена глубина нарушения герметичности колонн в скважинах № 39 и 27.

Посредством тех же изотопов были значительно ускорены работы по разведочной девонской скважине № 93. В ней выявился новый нефтеносный пласт. (Сталинградская правда, 19 авг. 1956 г.)

Сварка металлов

Применение радиоактивных изотопов в сварке в настоящее время идет по трем направлениям: в дефектоскопии сварных швов, в использовании изотопов в схемах автоматического регулирования

И контроля технологических процессов и, наконец, в изучении при помощи радиоактивных изотопов ряда металлургических особенностей сварки металлов.

Для дефектоскопии сварных швов широкое распространение получил радиоактивный изотоп кобальта-60 со сравнительно жестким гамма-излучением, а также изотопы европия-154, иридия-192, цезия-137 и туллия-170 с более мягким излучением.

В Институте электросварки имени Е. Патона Академии наук УССР разработан метод автоматического регулирования уровня металлической ванны при электрошлаковой сварке с применением радиоактивного изотопа кобальта-60. Разница в коэффициентах поглощения гамма-излучения шлака и металла позволила построить автоматический регулятор уровня ванны, то есть автоматизировать процесс варки металлов больших толщин. (Промышленно- экономическая газета, 10 окт. 1956 г.)

Приборная техника

Коллективом сотрудников Центральной научно-исследовательской лаборатории Госгортехнадзора СССР создан специальный прибор-разностенномер.

Вариант разностенномера «Р-3», представленный на Всесоюзной промышленной выставке, портативен, небольшого веса, просто управляется. Применяемые же сейчас в производстве способы проверки разностенности труб сложны, громоздки, неточны.

Большие перспективы открываются перед разностенномером в различных отраслях промышленности: в черной металлургии для быстрого, точного измерения стенок только что отлитых труб, при ремонте паровых котлов, труб водопровода, канализации.

Разностенномер был представлен на Женевской конференции по мирному использованию атомной энергии и получил там высокую оценку.

Сейчас прибор испытывается в производственных условиях на одном из Ленинградских судостроительных заводов. Вчера в адрес лаборатории пришла телеграмма из Ленинграда. «Испытания разностенномера проходят на стальных и медных трубах. Результаты хорошие».

Разностенномер-не единственный атомный прибор, изобретенный инженером Ю. Г. Кардашем. Его «гамма-пульпомер» можно было видеть на всех земснарядах при строительстве Куйбышевской, Сталинградской, Каховской и других гидроэлектростанций. Он определяет процентное содержание грунта в пульпе-смеси грунта и воды. Без него машинист земснаряда работает вслепую.

Сейчас сотрудники ЦНИЛ Госгортехнадзора работают над тем, чтобы использовать атомную энергию для обеспечения безопасных условий труда шахтеров. (Комсомольская правда, 10 окт. 1956 г.)

# Научно-исследовательский институт теплоэнергетических приборов НИИ Теплоприбор ведет научно-исследовательские и опытно-конструкторские работы по созданию различных автоматических приборов, основанных на применении радиоактивных изотопов.

За последнее время создан целый ряд новых приборов, часть из которых успешно прошла испытания и внедряется в производство.

Радиоактивный плотномер жидкости ПЖР-1 предназначен для автоматического измерения плотности любых жидкостей в диапазоне плотности от 0,1 до 2 граммов на кубический сантиметр. (Промышленно-экономическая газета, 14 окт. 1956 г.)

Пищевая промышленность

Всесоюзный научно-исследовательский институт консервной промышленности закончил расчеты установки для лучевой обработки пищевых продуктов. Установка предназначается для стерилизации пищевых продуктов, дозой облучения до 3-Ю 6 рентгена в течение 20-30 минут, а также дезинсекции, пастеризации, дегельминтизации дозами от 10 4 рентген до 10 6 рентген.

Вопросы непосредственного использования энергии ядерных процессов в химии активно разрабатываются коллективом Московского научно- исследовательского физико-химического института имени Л. Я. Карпова.

В настоящее время на химических заводах с помощью марганцовокислого калия производится окисление парафинов, в результате которого получается жирная кислота-исходное сырье для изготовления различных моющих средств.

Проведенные в институте исследования показали, что окислять парафины можно без катализатора, с помощью радиоактивных излучений. Получаемая в результате этого жирная кислота обладает более высокими качествами. Энергия ядерных процессов позволяет производить в данном случае более полное окисление.

Одним из исходных продуктов для изготовления пластмасс служит фенол, получаемый при окислении бензола с помощью катализатора. Обычно чтобы приготовить 1 кг фенола, требуется окислить 2 кг бензола. Лабораторные исследования в институте выявили возможность получения с помощью радиоактивных излучений из одного килограмма бензола одного килограмма фенола. Советские ученые достигли выхода вещества на затраченную энергию, в три раза большего, чем зарубежные ученые.

В сельском хозяйстве широко применяется гексахлоран. Чтобы изготовить этот продукт, производится хлорирование бензола. В результате этого процесса получается четыре изомера, из которых лишь один (^-изомер) обладает необходимыми качествами. Обычно наличие гамма-изомера составляет 12-15%. Использование радиоактивных излучений дало возможность увеличить содержание ^-изомера до 25%.

Установлено, что энергия атома способна воздействовать и на скорость процесса полимеризации.

Перспективна работа над синтезом ряда новых веществ. Ученые установили, что бензол при облучении в смеси с аммиаком дает прямо и непосредственно анилин. Работники института вносят значительный вклад в развитие радиационной химии. Среди них профессоры В. Веселовский и М. Проскурнин, кандидаты химических наук В. Карпов и А. Зимин, старшие научные сотрудники А. Балелко, В. Орехов и др. (Промышленно-экономическая газета, 4 нояб. 1956 г.)

Агротехника

Сотрудники лаборатории микробиологии и физиологии Научно-исследовательского института сельского хозяйства Юго-Востока СССР кандидаты наук А. Е. Фомин и Н. К. Астахова установили, что подкормка пшеницы и кукурузы органическим фосфором ускоряет их созревание. Это открытие имеет большое значение для Юго-Востока страны, где растение при более ранних сроках цветения может уйти от вредного действия засухи. Новый агротехнический прием будет также способствовать продвижению южных сортов на север.

Ученые института сельского хозяйства Юго- Востока СССР расширяют круг исследований с помощью метода меченых атомов. (Советская Россия, 16 сент. 1956 г.)

Всесоюзный научно-исследовательский институт зерна совместно с институтом биофизики Академии наук СССР разработал предварительный проект мощной установки для облучения зерна.

Установка предназначается для уничтожения насекомых, находящихся в зерне, с целью увеличения срока его хранения.

Проведены расчеты по выбору наиболее выгодных конфигураций облучателя, так как конфигурация облучателя в значительной мере влияет на производительность установки. В качестве источника -(-излучения предполагается использовать продукты деления, являющиеся отходами производства.

Установка сможет перерабатывать не менее 20 т зерна в час при дозе около 30 000 р. Предполагается, что установка будет транспортабельной.