Формула работы перемещения заряда. Работа электрического поля по перемещению заряда. Работа сил поля по перемещению заряда

Теперь известно, что на заряд, помещенный в электрическое поле, действует сила. Следовательно, перемещение заряда в элек­трическом поле будет сопровождаться работой

dA > 0 в случае, если работа совершается силами поля;

dA < 0 в случае, если работа совершается внешними силами против сил поля.

Рассмотрим перемещение пробного заряда Q 0 из точки 1 в точку 2 в поле сил, создаваемых зарядом Q.

Поле сил – центральное (рис. 73). Работа на пути dl будет равна

Отсюда работа по перемещению заряда из точки 1 в точку 2

Если работа совершается внешними силами, то

Электростатическое поле является потенциальным. Это значит, что работа по перемещению заряда не зависит от пути, по которому перемещается заряд, а зависит только от начального и конечного положения заряда.

Тело, находящееся в потенциальном поле сил, обладает по­тенциальной энергией, за счет которой совершается работа силами поля. Следовательно, полученное выражение для работы можно представить как разность потенциальных энергий заряда Q 0 в поле сил, созданном зарядом Q

Таким образом, потенциальная энергия в каждой точке поля зависит от величины пробного заряда Q 0 . Но если взять отношение W/Q 0 , то оно будет зависеть только от точки поля, и не будет зависеть от величины помещенного в эту точку за­ряда. Отношение = φ называют потенциалом поля.

Потенциалом электрического поля называется физическая величина, равная отношению потенциальной энергии, которую приобретает положи­тельный заряд Q 0 , если его переместить из в данную точку поля, к величине этого заряда

.

Из равенства А 12 = -А 21 следует другое определение.

Потенциалом поля называется физическая величина, чис­ленно равная работе, которую совершают силы поля над единичным положительным зарядом, при удалении его из данной точки поля в бесконечность.

Потенциал – величина скалярная. При суперпозиции (нало­жении) электрических полей потенциал суммарного электрического поля определяется как алгебраическая сумма потенциалов налагае­мых полей

Выражение для работы по перемещению заряда из точки с потен­циалом φ 1 в точку с потенциалом φ 2 имеет вид

A 12 = Q (φ 2 – φ 1).

Работа измеряется в Дж или эВ. 1эВ = 1,6 ∙10 -19 Дж.

Для наглядного изображения поля вместо линий напряжен­ности (силовых линий) можно воспользоваться поверхностями рав­ного потенциала или эквипотенциальными поверхностями. Экви­потенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция координат x, y, z, то уравнение эквипотенциальной поверхности имеет вид:

φ (x,y,z) = const.

Эквипотенциальные линии – линии, образующиеся от пересечения эквипотенциальной поверхности плоскостью проводятся так, что направление нормали к ним совпадает с направлением вектора в той же точке (рис.74).

Эквипотенциальную поверхность можно провести через лю­бую точку поля. Следовательно, таких поверхностей может быть бесконечное множество.

Условились, однако, проводить их таким образом, чтобы разность потенциалов для двух соседних эквипотенциальных по­верхностей была всюду одна и та же. Тогда по их густоте можно судить о величине напряженности поля.

Чем на самом деле является напряжение? Это способ описания и измерения напряженности электрического поля. Само по себе напряжение не может существовать без электронного поля вокруг положительных и отрицательных зарядов. Так же, как магнитное поле окружает Северный и Южный полюса.

По современным понятиям, электроны не оказывают взаимного влияния. Электрическое поле – это нечто, что исходит от одного заряда и его присутствие может ощущаться другим.

О понятии напряженности можно сказать то же самое! Просто это помогает нам представить, как электрическое поле может выглядеть. Честно говоря, оно не обладает ни формой, ни размером, ничем подобным. Но поле функционирует с определённой силой на электроны.

Силы и их действие на заряженную частицу

На заряженный электрон, воздействует сила с некоторым ускорением, заставляя его перемещаться все быстрее и быстрее. Этой силой совершается работа по передвижению электрона.

Силовые линии – это воображаемые очертания, которые возникают вокруг зарядов (определяется электрическим полем), и если мы поместим какой-либо заряд в эту область, он испытает силу.

Свойства силовых линий:

  • путешествуют с севера на юг;
  • не имеют взаимных пересечений.

Почему у двух силовых линий не возникает пересечений? Потому что не бывает этого в реальной жизни. То, о чём говорится, является физической моделью и не более. Физики изобрели её для описания поведения и характеристик электрического поля. Модель очень хороша при этом. Но помня, что это всего лишь модель, мы должны знать о том, для чего такие линии нужны.

Силовые линии демонстрируют:

  • направления электрических полей;
  • напряженность. Чем ближе линии, тем больше сила поля и наоборот.

Если нарисованные силовые линии нашей модели пересекутся, расстояние меж ними станет бесконечно малыми. Из-за силы поля, как формы энергии, и из-за фундаментальных законов физики это невозможно.

Что такое потенциал?

Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.

Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.

Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.

Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.

А ниже показан заряд с большим потенциалом и плотностью потока.

Например: во время грозы электроны истощаются в одной точке и собираются в другой, образуя электрическое поле. Когда сила станет достаточной, чтобы сломать диэлектрическую проницаемость, получается удар молнии (состоящий из электронов). При выравнивании разности потенциалов электрическое поле разрушается.

Электростатическое поле

Это разновидность электрического поля, неизменного повремени, образуемого зарядами, которые не двигаются. Работа передвижения электрона определяется соотношениями,

где r1 и r2 – расстояния заряда q до начальной и конечной точки траектории движения. По полученной формуле видно, что работа при перемещении заряда из точки в точку не зависит от траектории, а зависит лишь от начала и конца перемещения.

На всякий электрон действует сила, и поэтому при перемещении электрона в поле выполняется определенная работа.

В электростатическом поле работа зависит лишь от конечных пунктов следования, а не от траектории. Поэтому, когда движение происходит по замкнутому контуру, заряд приходит в исходное положение, и величина работы становится равной нулю. Это происходит потому, что падение потенциала нулевое (поскольку электрон возвращается в ту же самую точку). Так как разность потенциалов нулевая, чистая работа будет также нулевой, ведь потенциал падения равен работе, деленной на значение заряда, выраженное в кулонах.

Об однородном электрическом поле

Однородным называется электрическое поле меж двух противоположно заряженных плоских металлических пластин, где линии напряженности параллельны между собой.

Почему сила действия на заряд в таком поле всегда одинаковая? Благодаря симметрии. Когда система симметрична и есть только одна вариация измерения, всякая зависимость исчезает. Есть много других фундаментальных причин для ответа, но фактор симметрии – самый простой.

Работа по передвижению положительного заряда

Электрическое поле – это поток электронов от «+» до «-», приводящий к высокой напряженности области.

Поток – это количество линий электрического поля, проходящих через него. В каком направлении будут положительные электроны двигаться? Ответ: по направлению электрического поля от положительного (высокого потенциала) к отрицательному (низкому потенциалу). Поэтому положительно заряженная частица будет двигаться именно в этом направлении.

Интенсивность поля во всякой точке определяется как сила, воздействующая на положительный заряд, помещенный в эту точку.

Работа заключается в переносе электронных частиц по проводнику. По закону Ома, можно определить работу разными вариациями формул, чтобы провести расчет.

Из закона сохранения энергии следует, что работа – это изменение энергии на отдельном отрезке цепи. Перемещение положительного заряда против электрического поля требует совершения работы и в результате получается выигрыш в потенциальной энергии.

Заключение

Из школьной программы мы помним, что электрическое поле образуется вокруг заряженных частиц. На любой заряд в электрическом поле воздействует сила, и вследствие этого при движении заряда выполняется некоторая работа. Большим зарядом создается больший потенциал, который производит более интенсивное или сильное электрическое поле. Это означает, что возникает больший поток и плотность на единицу площади.

Важный момент заключается в том, что должна быть выполнена определенной силой работа по перемещению заряда от высокого потенциала к низкому. Тем самым уменьшается разница заряда между полюсами. Перемещение электронов от токи до точки требует энергии.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

При перемещении заряда в электростатическом поле, действующие на заряд кулоновские силы, совершают работу. Пусть заряд q 0 0 перемещается в поле заряда q0 из точки С в точку В вдоль произвольной траектории (рис.1.12). На q 0 действует кулоновская сила

При элементарном перемещении заряда dl , эта сила совершает работу dA

Где  - угол между векторами и . Величина dl cos=dr является проекцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегралом , где r 1 и r 2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q 0 в поле точечного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения .

В разделе динамики показано, что поле, удовлетворяющее этому условию, является потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное , а действующие в нем силы - консервативные .

Если заряды q и q 0 одного знака, то работа сил отталкивания будет положительной при их удалении и отрицательной при их сближении (в последнем случае работу совершают внешние силы). Если заряды q и q 0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга (последнем случае работу также совершают внешние силы).

Пусть электростатическое поле, в котором перемещается заряд q 0 , создано системой зарядов q 1 , q 2 ,...,q n . Следовательно, на q 0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А равнодействующей силы равна алгебраической сумме работ составляющих сил, , где r i1 и r i2 - начальное и конечное расстояния между зарядами q i и q 0 .

Циркуляция вектора напряженности.

При перемещении заряда по произвольному замкнутому пути L работа сил электростатического поля равна нулю. Поскольку, конечное положение заряда равно начальному r 1 =r 2 , то и (кружок у знака интеграла указывает на то, что интегрирование производится по замкнутому пути). Так как и , то . Отсюда получаем . Сократив обе части равенства на q 0 , получим или , где E l =Ecos - проекция вектора Е на направление элементарного перемещения . Интеграл называется циркуляцией вектора напряженности . Таким образом,циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю . Это заключение есть условие потенциальности поля .

Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу A 12 можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0 .

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения ) отрицательна .

Если поле создается системой n точечных зарядов, то потенциальная энергия заряда q 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

Потенциал электростатического поля.

Отношение не зависит от пробного заряда q0 и является, энергетической характеристикой поля, называемой потенциалом :

Потенциал ϕ в какой-либо точке электростатического поля есть скалярная физическая величина , определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

Следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически ).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение - разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением .

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

Эквипотенциальные поверхности.

ЭПП - поверхности равного потенциала.

Свойства ЭПП:

Работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

Вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом - электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Рассмотрим ситуацию: заряд q 0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q 0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории . Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными , а само поле называется потенциальным .

Потенциал

Система "заряд - электростатическое поле" или "заряд - заряд" обладает потенциальной энергией , подобно тому, как система "гравитационное поле - тело" обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал - это характеристика электростатического поля.


Вспомним потенциальную энергию в механике . Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело - наоборот.

Потенциальная энергия поля - это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.


Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов


Эту формулу можно представить в ином виде


Эквипотенциальная поверхность (линия) - поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности , равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ - точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком "минус". Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак "+", работа имеет знак "-".

На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами электрического поля отрицательного заряда Q. По закону Кулона сила, перемещающая заряд, является переменной и равной

Где r - переменное расстояние между зарядами.

. Это выражение можно получить так:

Величина представляет собой потенциальную энергию W п заряда в данной точке электрического поля:

Знак (-) показывает, что при перемещении заряда полем его потенциальная энергия убывает, переходя в работу перемещения.

Величина равная потенциальной энергии единичного положительного заряда (q = +1), называется потенциалом электрического поля.

Тогда . Для q = +1 .

Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного положительного заряда из одной точки в другую.

Потенциал точки электрического поля равен работе по перемещению единичного положительного заряда из данной точки на бесконечность: . Единица измерения - Вольт = Дж/Кл.

Работа перемещения заряда в электрическом поле не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути.

Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной.

Напряженность поля является его силовой характеристикой, а потенциал –энергетической.

Связь между напряженностью поля и его потенциалом выражается формулой

,

знак (-) обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, а в сторону возрастания потенциала.

5. Использование электрических полей в медицине.

Франклинизация, или «электростатический душ», представляет собой лечебный метод, при котором организм больного или отдельные участки его подвергаются воздействию постоянного электрического поля высокого напряжения.

Постоянное электрическое поле при процедуре общего воздействия может достигать 50 кВ, при местном воздействии 15 – 20 кВ.

Механизм лечебного действия. Процедуру франклинизации проводят таким образом, что голова больного либо другой участок тела становятся как бы одной из пластин конденсатора, в то время как второй является электрод, подвешенный над головой, или устанавливаемый над местом воздействия на расстоянии 6 - 10см. Под влиянием высокого напряжения под остриями игл, закрепленных на электроде, возникает ионизация воздуха с образованием аэроионов, озона и окислов азота.

Вдыхание озона и аэроионов вызывает реакцию сосудистой сети. После кратковременного спазма сосудов происходит расширение капилляров не только поверхностных тканей, но и глубоких. В результате улучшаются обменно-трофические процессы, а при наличии повреждения тканей стимулируются процессы регенерации и восстановления функций.

В результате улучшения кровообращения, нормализации обменных процессов и функции нервов происходит уменьшение головных болей, повышенного артериального давления, повышенного сосудистого тонуса, урежение пульса.

Применение франклинизации показано при функциональных расстройствах нервной системы

Примеры решения задач

1. При работе аппарата для франклинизации ежесекундно в 1 см 3 воздуха образуется 500000 легких аэроионов. Определить работу ионизации, необходимую для создания в 225 см 3 воздуха такого же количества аэроионов за время лечебного сеанса (15 мин). Потенциал ионизации молекул воздуха считать равным 13,54 В, условно считать воздух однородным газом.

- потенциал ионизации, А– работа ионизации, N-количество электронов.

2. При лечении электростатическим душем на электродах электрической машины приложена разность потенциалов 100 кВ. Определить, какой заряд проходит между электродами за время одной процедуры лечения, если известно, что силы электрического поля при этом совершают работу 1800Дж.

Отсюда

Электрический диполь в медицине

В соответствии с теорией Эйнтховена, лежащей в основе электрокардиографии, сердце представляет собой электрический диполь, расположенный в центре равностороннего треугольника (треугольник Эйнтховена), вершины которого условно можно считать

находящимися в правой руке, левой руке и левой ноге.

За время сердечного цикла изменяется как положение диполя в пространстве, так и дипольный момент. Измерение разности потенциалов между вершинами треугольника Эйнтховена позволяет определить соотношение между проекциями дипольного момента сердца на стороны треугольника следующим образом:

Зная напряжения U AB , U BC , U AC , можно определить, как ориентирован диполь относительно сторон треугольника.

В электрокардиографии разность потенциалов между двумя точками тела (в данном случае между вершинами треугольника Эйнтховена) называется отведением.

Регистрация разности потенциалов в отведениях в зависимости от времени называется электрокардиограммой.

Геометрическое место точек конца вектора дипольного момента за время сердечного цикла называется вектор-кардиограммой .

Лекция №4

Контактные явления

1. Контактная разность потенциалов. Законы Вольты.

2. Термоэлектричество.

3. Термопара, ее использование в медицине.

4. Потенциал покоя. Потенциал действия и его распространение.

  1. Контактная разность потенциалов. Законы Вольты.

При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной.

Для того чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла.

Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A 1 и A 2, причем A 1 < A 2 . Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A 2 > A 1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй - отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:

(1)

Приведем теперь в контакт два металла с A 1 = A 2 , имеющие различные концентрации свободных электронов n 01 > n 02 . Тогда начнется преимущественный перенос свободных электронов из первого металла во второй. В результате первый металл зарядится положительно, второй – отрицательно. Между металлами возникнет разность потенциалов , которая прекратит дальнейший перенос электронов. Возникающая при этом разность потенциалов определяется выражением:

, (2)

где k - постоянная Больцмана.

В общем случае контакта металлов, различающихся и работой выхода и концентрацией свободных электронов к.р.п. из (1) и (2) будет равна:

(3)

Легко показать, что сумма контактных разностей потенциалов последовательно соединенных проводников равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников:

Это положение называется вторым законом Вольты.

Если теперь непосредственно соединить концевые проводники, то существующая между ними разность потенциалов компенсируется равной по величине разностью потенциалов , возникающей в контакте 1 и 4. Поэтому к.р.п. не создает тока в замкнутой цепи металлических проводников, имеющих одинаковую температуру.

2. Термоэлектричество – это зависимость контактной разности потенциалов от температуры.

Составим замкнутую цепь из двух разнородных металлических проводников 1 и 2.

Температуры контактов a и b будем поддерживать различными Т a > T b . Тогда, согласно формуле (3), к.р.п. в горячем спае больше, чем в холодном: . В результате между спаями a и b возникает разность потенциалов , называемая термоэлектродвижущей силой, а в замкнутой цепи пойдет ток I. Пользуясь формулой (3), получим

где для каждой пары металлов.

  1. Термопара, ее использование в медицине.

Замкнутая цепь проводников, создающая ток за счет различия температур контактов между проводниками, называется термопарой.

Из формулы (4) следует, что термоэлектродвижущая сила термопары пропорциональна разности температур спаев (контактов).

Формула (4) справедлива и для температур по шкале Цельсия:

Термопарой можно измерить только разности температур. Обычно один спай поддерживается при 0ºС. Он называется холодным спаем. Другой спай называется горячим или измерительным.

Термопара обладает существенными преимуществами перед ртутными термометрами: она чувствительна, безинерционна, позволяет измерять температуру малых объектов, допускает дистанционные измерения.

Измерение профиля температурного поля тела человека.

Считается, что температура тела человека постоянна, однако это постоянство относительно, поскольку на различных участках тела температура не одинакова и меняется в зависимости от функционального состояния организма.

Температура кожи имеет свою вполне определенную топографию. Самую низкую температуру (23-30º) имеют дистальные отделы конечностей, кончик носа, ушные раковины. Самая высокая температура – в подмышечной области, в промежности, области шеи, губ, щек. Остальные участки имеют температуру 31 - 33,5 ºС.

У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием диагностики заболеваний методом построения профиля температурного поля с помощью контактных устройств: термопары и термометра сопротивления.

4. Потенциал покоя. Потенциал действия и его распространение.

Поверхностная мембрана клетки не одинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя)

При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия, который распространяется в нервных волокнах.

Механизм распространения потенциала действия по нервному волокну рассматривается по аналогии с распространением электромагнитной волны по двухпроводной линии. Однако наряду с этой аналогией существуют и принципиальные различия.

Электромагнитная волна, распространяясь в среде, ослабевает, так как ее энергия рассеивается, превращаясь в энергию молекулярно-теплового движения. Источником энергии электромагнитной волны является ее источник: генератор, искра и т.д.

Волна возбуждения не затухает, так как получает энергию из самой среды, в которой она распространяется (энергия заряженной мембраны).

Таким образом, распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки.

Примеры решения задач

1. При построении профиля температурного поля поверхности тела человека используется термопара с сопротивлением r 1 = 4 Ом и гальванометр с сопротивлением r 2 = 80 Ом; I=26 мкА при разности температур спаев ºС. Чему равна постоянная термопары?

Термоэдс, возникающая в термопаре, равна , где термопары, -разность температур спаев.

По закону Ома для участка цепи ,где U принимаем как . Тогда

Лекция №5

Электромагнетизм

1. Природа магнетизма.

2. Магнитное взаимодействие токов в вакууме. Закон Ампера.

4. Диа-, пара- и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

5. Магнитные свойства тканей организма.

1. Природа магнетизма.

Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами.

Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты.

Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества.

2 . Магнитное взаимодействие токов в вакууме. Закон Ампера .

Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I 1 и I 2 в них и обратно пропорциональна квадрату расстояния r между участками:

Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и .

где - угол между и радиусом-вектором r 12 , соединяющим с , а - угол между и нормалью n к плоскости Q, содержащей участок и радиус-вектор r 12.

Объединяя (1) и (2) и вводя коэффициент пропорциональности k, получим математическое выражение закона Ампера:

(3)

Направление силы также определяется по правилу буравчика: оно совпадает с направлением поступательного движения буравчика, рукоятка которого вращается от к нормали n 1.

Элементом тока называется вектор, равный по величине произведению Idl бесконечно малого участка длины dl проводника на силу тока I в нем и направленный вдоль этого тока. Тогда, переходя в (3) от малых к бесконечно малым dl, можно записать закон Ампера в дифференциальной форме:

. (4)

Коэффициент k можно представить в виде

где - магнитная постоянная (или магнитная проницаемость вакуума).

Величина для рационализации с учетом (5) и (4) запишется в виде

. (6)

3 . Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа .

Поскольку электрические токи взаимодействуют друг с другом посредством своих магнитных полей, количественную характеристику магнитного поля можно установить на основе этого взаимодействия-закона Ампера. Для этого проводник l с током I разобьем на множество элементарных участков dl. Он создает в пространстве поле.

В точке О этого поля, находящуюся на расстоянии r от dl, поместим I 0 dl 0. Тогда, согласно закону Ампера (6), на этот элемент будет действовать сила

(7)

где -угол между направлением тока I на участке dl (создающем поле) и направлением радиуса-вектора r, а -угол между направлением тока I 0 dl 0 и нормалью n к плоскости Q содержащей dl и r.

В формуле (7) выделим часть, не зависящую от элемента тока I 0 dl 0, обозначив ее через dH:

Закон Био-Савара-Лапласа (8)

Величина dH зависит только от элемента тока Idl, создающего магнитное поле, и от положения точки О.

Величина dH является количественной характеристикой магнитного поля и называется напряженностью магнитного поля. Подставляя (8) в (7), получим

где - угол между направлением тока I 0 и магнитного поля dH. Формула (9) называется формулой Ампера, выражает зависимость силы, с которой магнитное поле действует на находящийся в нем элемент тока I 0 dl 0 от напряженности этого поля. Эта сила расположена в плоскости Q перпендикулярно dl 0 . Ее направление определяется по «правилу левой руки».

Полагая в (9) =90º, получим:

Т.е. напряженность магнитного поля направлена по касательной к силовой линии поля, а по величине равна отношению силы, с которой поле действует на единичный элемент тока, к магнитной постоянной.

4 . Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными , вторые –парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики .

Диамагнетики - фосфор, сера, золото, серебро, медь, вода, органические соединения.

Парамагнетики - кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы.

Ферромагнетики – железо, никель, кобальт, их сплавы.

Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества.

У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.

Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается.

У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его.

(4), где -абсолютная магнитная проницаемость среды. В вакууме =1, , а

В ферромагнетиках имеются области (~10 -2 см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен.

С появлением внешнего поля домены, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При достаточно сильном поле все домены переориентируются вдоль поля, и ферромагнетик быстро намагничивается до насыщения.

При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение не может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля.

При температуре, равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик.

Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность:

(5)

Единица измерения B –Тесла, Ф-Вебер.