Презентация на тему термоядерные реакции солнце. Презентация по физике на тему: "Термоядерные реакции. Водородная бомба". Водородная бомба для стратегической авиации

Презентация по физике
На тему:
Термоядерная реакция
900igr.net

Реакция слияния легких ядер при
очень высокой температуре,
сопровождающаяся выделением
энергии, называется термоядерной
реакцией.

Для слияния необходимо, чтобы
расстояние между ядрами
приблизительно было равно 0,000 000 000
001 см. Однако этому препятствуют
кулоновские силы. Они могут быть
преодолены при наличии у ядер большой
кинетической энергии. Особенно большое
практическое значение имеет то, что при
термоядерной реакции на каждый нуклон
выделяется намного больше энергии, чем
при ядерной реакции, например, при
синтезе ядра гелия из ядер водорода
выделяется энергия, равная 6 МэВ, а при
делении ядра урана на один нуклон
приходится »0,9 МэВ.

Термоядерные реакции на Солнце

Проблема использования
термоядерной энергии по праву
считается проблемой №1
современной науки. Ее решение
позволит навсегда избавить
человечество от угрозы
энергетического голода. Ведь моря и
океаны содержат огромные запасы
тех самых легких ядер, которые
необходимы для термоядерной
реакции. Каким же громадным и
«неисчерпаемым» источником энергии
располагает человек! Заставить
служить эту энергию людям - что

Лев Андреевич Арцимович (12 (25) февраля 1909, Москва 1 марта 1973, Москва) - выдающийся советский физик, академик АН СССР (1953), Герой Социалистическ

Лев Андреевич Арцимович (12 (25) февраля 1909,
Москва 1 марта 1973, Москва) - выдающийся
советский физик, академик АН СССР (1953), Герой
Социалистического Труда (1969
).

Под руководством Арцимовича
впервые в мире в лабораторных
условиях осуществлена
термоядерная реакция.

Действия термоядерного оружия лежит использование термоядерной реакции

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Слайд 10

Слайд 11

Слайд 12

Слайд 13

Слайд 14

Слайд 15

Слайд 16

Слайд 17

Слайд 18

Презентацию на тему "Термоядерная реакция" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Слайд 1

Слайд 2

Термоядерная реакция - реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии

Энергетически очень выгодна!!!

Слайд 3

Синтез 4 г гелия

Сгорание 2 вагонов каменного угля

Сравнение термоядерной энергии и выделяющейся при реакции горения

Слайд 4

Условия протекания термоядерной реакции

Для того, чтобы произошла реакция синтеза, исходные ядра должны попасть в сферу действия ядерных сил(сблизиться на расстояние 10-14 м), преодолев силу электростатического отталкивания. Это возможно при большой кинетической энергии ядер. Для этого вещество должно иметь температуру 107 К. Поэтому реакция названа «термоядерной»(от лат. therme-тепло).

Слайд 5

Неуправляемые термоядерные реакции

На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез. По одной из гипотез в недрах Солнца происходит слияние 4 ядер водорода в ядро гелия. При этом выделяется колоссальное количество энергии 2. Водородная бомба.

Фотография взрыва первой французской термоядерной бомбы Канопус, которая была испытана 24 августа 1968 года во Французской Полинезии.

Слайд 6

Самой мощной из испытанных бомб была водородная бомба мощностью 57 мегатонн (57 миллионов тонн тротилового эквивалента), создана в СССР. Среди разработчиков были Сахаров, Харитонов и Адамский. Утром 30 октября 1961 года в 11:32 бомба, сброшенная с высоты 10 км, достигла высоты 4000 метров над Новой Землей (СССР) и была приведена в действие. Место взрыва напоминало ад – землю устилал толстый слой пепла от сгоревших скал. В радиусе 50 километров от эпицентра все горело, хотя перед взрывом здесь лежал снег высотой в человеческий рост, в 400 километрах в заброшенном поселке были разрушены деревянные дома.. Мощность взрыва в 10 раз превысила суммарную мощность всех взрывчатых веществ, использованных во второй мировой войне.

Слайд 7

Механизм действия водородной бомбы.

Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из соединения дейтерия с литием-6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.

Слайд 8

Водородная бомба для стратегической авиации

Самая первая водородная бомба, освоенная серийным производством и принятая на вооружение стратегической авиации. Окончание разработки - 1962 г.

Музей РФЯЦ–ВНИИТФ г.Снежинск.

Слайд 9

Преимущества управляемой термоядерной реакции

Идея создания термоядерного реактора зародилась в 1950-х годах. В настоящее время (2010) управляемый термоядерный синтез ещё не осуществлён. Термоядерная энергетика, в которой используется абсолютно нерадиоактивный дейтерий и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике, будет более экологически чистой. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. Источник этот практически неисчерпаем, он основан на столкновении ядер водорода, а водород - самое распространенное вещество во Вселенной.

Этой проблемой занимались в CCCР И.В. Курчатов, А.Д. Сахаров, И.Е. Тамм, Л.А.Арцимович, Е.П. Велихов

Слайд 10

Основные направления исследований УТС

Основная проблема – удержать газ при температуре 107 К (плазму) в замкнутом пространстве. На данный момент достаточно интенсивно финансируются две принципиальные схемы осуществления управляемого термоядерного синтеза. 1. Квазистационарные системы, в которых удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. 2. Импульсные системы. В таких системах УТС осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными или ионными импульсами. Такое облучение вызывает последовательность термоядерных микровзрывов.

Слайд 11

ТОКАМАК- тороидальная вакуумная камера для магнитного удержания плазмы. Плазма удерживается магнитным полем, внутри которого плазменный «шнур» висит, не касаясь стенок камеры – «бублика». Впервые разработан в Институте атомной энергии им. Курчатова для исследования проблемы управляемого термоядерного синтеза. На камеру намотаны катушки для создания магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем, с помощью индуктора, в камере создают вихревое электрическое поле.

Квазистационарные системы

Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера ТОКАМАКа является вторичной обмоткой. Вихревое электрическое поле вызывает протекание тока в плазме и её нагрев.

Слайд 12

Проблемы управляемого термоядерного синтеза в ТОКАМАКе

Увеличение давления в плазме вызывает в ней процессы, отрицательно сказывающиеся на устойчивости этого состояния вещества. В ней возникают возмущения типа «шейки», «змейки» , что ведёт к выбрасыванию плазмы на стенки камеры. Они разрушаются и плазма остывает. Магнитное поле должно препятствовать движению плазмы поперек силовых линий. Пока ТОКАМАК, магнитное поле которого создаётся при помощи сверхпроводящих электромагнитов, требует для удержания жгута плазмы больше энергии, чем выделяется вследствие слияния ядер.

Пока удаётся получить плотность плазмы 1014 частиц на см3 на время 1 с, что не позволяет пока запустить самоподдерживающуюся термоядерную реакцию. Произведение плотности плазмы на время удержания должны быть в 20 раз больше, чем достигнуто сейчас.

Для промышленного использования реакции термоядерного синтеза должны идти непрерывно в течение длительного времени. Чтобы добиться протекания реакции в требуемом масштабе, необходимо поднять давление в плазме.

Слайд 13

В таких системах УТС осуществляется путем кратковременного сжатия и сверхбыстрого нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными многоканальными лазерами или ионными импульсами. Такое облучение вызывает в центре мишени термоядерную реакцию.

Импульсные системы

Мишень для УТС состоит из полой оболочки (1), слоя твердой замороженной ДТ смеси (2) и ДТ газа низкой плотности в центре мишени (3).

Главная идея - осуществление такого режима сжатия мишени, когда до температуры зажигания доводится лишь ее центральная часть, а основная масса топлива остается холодной. Затем волна горения распространяется к поверхностным слоям топлива.

Слайд 14

Ливерморская национальная лаборатория в Калифорнии - самый мощный в мире лазерный комплекс.

192 мощных лазера, которые будут одновременно направляться на миллиметровую сферическую мишень (около 150 микрограммов смеси дейтерия и трития). Температура мишени достигнет в результате 100 млн. градусов, при этом давление внутри шарика в 100 млрд. раз превысит давление земной атмосферы. То есть условия в центре мишени будут сравнимы с условиями внутри Солнца. Импульсная термоядерная установка подобна двигателю внутреннего сгорания, в котором происходят взрывы горючего, периодически подаваемого в рабочую камеру. Трудности УТС заключаются в проблеме мгновенно и равномерно нагреть смесь. Расчеты показывают, что если достичь плотности в 1000 раз выше плотности твердого водорода, то одного миллиона джоулей будет достаточно для поджига термоядерной реакции. Но пока в экспериментальных установках плотность возрастает лишь в 30-40 раз. Основное препятствие- недостаточная равномерность освещения мишени.

Слайд 15

Термоядерный реактор будет потреблять очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт будет сжигать около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 5 ·1020 Дж в год, т.е. половину будущих потребностей электроэнергии, то общее годовое потребление дейтерия и лития составят всего 1500 и 4500 тонн. При таком потреблении содержащегося в воде дейтерия (0,015%) хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Термоядерный синтез-надежда современной энергетики

Слайд 16

Международный экспериментальный термоядерный реактор ИТЭР

Проблема управляемого термоядерного синтеза настолько сложна, что самостоятельно с ней не справится ни одна страна. Поэтому мировое сообщество избрало самый оптимальный путь - создание проекта международного термоядерного экспериментального реактора - ИТЭР, в котором на сегодня участвуют, кроме России, США, Евросоюз, Япония,

Китай и Южная Корея. Термоядерный реактор будет построен в Кадараше (Франция) и введен в эксплуатацию примерно в 2016 году. Именно ТОКАМАК должен стать основой первого в мире экспериментального термоядерного реактора.

Слайд 17

Топливо с Луны (гелий-3)

Эта реакция требует более высоких температур, но является экологически чистой, поскольку выделяются не всепроникающие нейтроны, как в других ядерных реакциях, а заряженные протоны, которые несложно уловить без риска, что конструкционные материалы станут радиоактивными. Срок службы реактора значительно возрастает, конструкция упрощается, надежность возрастает. Так как протоны несут электрический заряд, возникает возможность прямого преобразования термоядерной энергии в электрическую,

минуя потери на тепловое преобразование. На Земле гелия-3 всего 4 тысячи тонн. Для обеспечения России нужно приблизительно 20 тонн гелия-3 в год, для современной мировой экономики потребуется около 200 т гелия- 3 в год. Его запасы в грунте Луны составляет около 1 млн. т. Добыча гелия-3 вполне по силам космическим ведомствам уже сейчас.

  • Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  • Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  • Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  • Старайтесь говорить уверенно, плавно и связно.
  • Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.
  • 1 слайд

    2 слайд

    Термоядерная реакция - реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии Энергетически очень выгодна!!!

    3 слайд

    Синтез 4 г гелия Сгорание 2 вагонов каменного угля Сравнение термоядерной энергии и выделяющейся при реакции горения

    4 слайд

    Условия протекания термоядерной реакции Для того, чтобы произошла реакция синтеза, исходные ядра должны попасть в сферу действия ядерных сил(сблизиться на расстояние 10-14 м), преодолев силу электростатического отталкивания. Это возможно при большой кинетической энергии ядер. Для этого вещество должно иметь температуру 107 К. Поэтому реакция названа «термоядерной»(от лат. therme-тепло).

    5 слайд

    Неуправляемые термоядерные реакции На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез. По одной из гипотез в недрах Солнца происходит слияние 4 ядер водорода в ядро гелия. При этом выделяется колоссальное количество энергии 2. Водородная бомба. Фотография взрыва первой французской термоядерной бомбы Канопус, которая была испытана 24 августа 1968 года во Французской Полинезии.

    6 слайд

    Самой мощной из испытанных бомб была водородная бомба мощностью 57 мегатонн (57 миллионов тонн тротилового эквивалента), создана в СССР. Среди разработчиков были Сахаров, Харитонов и Адамский. Утром 30 октября 1961 года в 11:32 бомба, сброшенная с высоты 10 км, достигла высоты 4000 метров над Новой Землей (СССР) и была приведена в действие. Место взрыва напоминало ад – землю устилал толстый слой пепла от сгоревших скал. В радиусе 50 километров от эпицентра все горело, хотя перед взрывом здесь лежал снег высотой в человеческий рост, в 400 километрах в заброшенном поселке были разрушены деревянные дома.. Мощность взрыва в 10 раз превысила суммарную мощность всех взрывчатых веществ, использованных во второй мировой войне.

    7 слайд

    Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из соединения дейтерия с литием-6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.

    8 слайд

    Водородная бомба для стратегической авиации Самая первая водородная бомба, освоенная серийным производством и принятая на вооружение стратегической авиации. Окончание разработки - 1962 г. Музей РФЯЦ–ВНИИТФ г.Снежинск.

    9 слайд

    Преимущества управляемой термоядерной реакции Идея создания термоядерного реактора зародилась в 1950-х годах. В настоящее время (2010) управляемый термоядерный синтез ещё не осуществлён. Термоядерная энергетика, в которой используется абсолютно нерадиоактивный дейтерий и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике, будет более экологически чистой. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. Источник этот практически неисчерпаем, он основан на столкновении ядер водорода, а водород - самое распространенное вещество во Вселенной. Этой проблемой занимались в CCCР И.В. Курчатов, А.Д. Сахаров, И.Е. Тамм, Л.А.Арцимович, Е.П. Велихов

    10 слайд

    Основные направления исследований УТС Основная проблема – удержать газ при температуре 107 К (плазму) в замкнутом пространстве. На данный момент достаточно интенсивно финансируются две принципиальные схемы осуществления управляемого термоядерного синтеза. 1. Квазистационарные системы, в которых удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. 2. Импульсные системы. В таких системах УТС осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными или ионными импульсами. Такое облучение вызывает последовательность термоядерных микровзрывов.

    11 слайд

    ТОКАМАК- тороидальная вакуумная камера для магнитного удержания плазмы. Плазма удерживается магнитным полем, внутри которого плазменный «шнур» висит, не касаясь стенок камеры – «бублика». Впервые разработан в Институте атомной энергии им. Курчатова для исследования проблемы управляемого термоядерного синтеза. На камеру намотаны катушки для создания магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем, с помощью индуктора, в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера ТОКАМАКа является вторичной обмоткой. Вихревое электрическое поле вызывает протекание тока в плазме и её нагрев.

    12 слайд

    Проблемы управляемого термоядерного синтеза в ТОКАМАКе Увеличение давления в плазме вызывает в ней процессы, отрицательно сказывающиеся на устойчивости этого состояния вещества. В ней возникают возмущения типа «шейки», «змейки» , что ведёт к выбрасыванию плазмы на стенки камеры. Они разрушаются и плазма остывает. Магнитное поле должно препятствовать движению плазмы поперек силовых линий. Пока ТОКАМАК, магнитное поле которого создаётся при помощи сверхпроводящих электромагнитов, требует для удержания жгута плазмы больше энергии, чем выделяется вследствие слияния ядер. Пока удаётся получить плотность плазмы 1014 частиц на см3 на время 1 с, что не позволяет пока запустить самоподдерживающуюся термоядерную реакцию. Произведение плотности плазмы на время удержания должны быть в 20 раз больше, чем достигнуто сейчас. Для промышленного использования реакции термоядерного синтеза должны идти непрерывно в течение длительного времени. Чтобы добиться протекания реакции в требуемом масштабе, необходимо поднять давление в плазме.

    13 слайд

    В таких системах УТС осуществляется путем кратковременного сжатия и сверхбыстрого нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными многоканальными лазерами или ионными импульсами. Такое облучение вызывает в центре мишени термоядерную реакцию. Мишень для УТС состоит из полой оболочки (1), слоя твердой замороженной ДТ смеси (2) и ДТ газа низкой плотности в центре мишени (3). Главная идея - осуществление такого режима сжатия мишени, когда до температуры зажигания доводится лишь ее центральная часть, а основная масса топлива остается холодной. Затем волна горения распространяется к поверхностным слоям топлива.

    14 слайд

    Ливерморская национальная лаборатория в Калифорнии - самый мощный в мире лазерный комплекс. 192 мощных лазера, которые будут одновременно направляться на миллиметровую сферическую мишень (около 150 микрограммов смеси дейтерия и трития). Температура мишени достигнет в результате 100 млн. градусов, при этом давление внутри шарика в 100 млрд. раз превысит давление земной атмосферы. То есть условия в центре мишени будут сравнимы с условиями внутри Солнца. Импульсная термоядерная установка подобна двигателю внутреннего сгорания, в котором происходят взрывы горючего, периодически подаваемого в рабочую камеру. Трудности УТС заключаются в проблеме мгновенно и равномерно нагреть смесь. Расчеты показывают, что если достичь плотности в 1000 раз выше плотности твердого водорода, то одного миллиона джоулей будет достаточно для поджига термоядерной реакции. Но пока в экспериментальных установках плотность возрастает лишь в 30-40 раз. Основное препятствие- недостаточная равномерность освещения мишени.

    15 слайд

    Термоядерный реактор будет потреблять очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт будет сжигать около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 5 ·1020 Дж в год, т.е. половину будущих потребностей электроэнергии, то общее годовое потребление дейтерия и лития составят всего 1500 и 4500 тонн. При таком потреблении содержащегося в воде дейтерия (0,015%) хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет. Термоядерный синтез-надежда современной энергетики

    16 слайд

    Международный экспериментальный термоядерный реактор ИТЭР Проблема управляемого термоядерного синтеза настолько сложна, что самостоятельно с ней не справится ни одна страна. Поэтому мировое сообщество избрало самый оптимальный путь - создание проекта международного термоядерного экспериментального реактора - ИТЭР, в котором на сегодня участвуют, кроме России, США, Евросоюз, Япония, Китай и Южная Корея. Термоядерный реактор будет построен в Кадараше (Франция) и введен в эксплуатацию примерно в 2016 году. Именно ТОКАМАК должен стать основой первого в мире экспериментального термоядерного реактора.

    17 слайд

    Топливо с Луны (гелий-3) Эта реакция требует более высоких температур, но является экологически чистой, поскольку выделяются не всепроникающие нейтроны, как в других ядерных реакциях, а заряженные протоны, которые несложно уловить без риска, что конструкционные материалы станут радиоактивными. Срок службы реактора значительно возрастает, конструкция упрощается, надежность возрастает. Так как протоны несут электрический заряд, возникает возможность прямого преобразования термоядерной энергии в электрическую, минуя потери на тепловое преобразование. На Земле гелия-3 всего 4 тысячи тонн. Для обеспечения России нужно приблизительно 20 тонн гелия-3 в год, для современной мировой экономики потребуется около 200 т гелия- 3 в год. Его запасы в грунте Луны составляет около 1 млн. т. Добыча гелия-3 вполне по силам космическим ведомствам уже сейчас.

    Cлайд 1

    Cлайд 2

    Реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии, называется термоядерной реакцией.

    Cлайд 3

    Для слияния необходимо, чтобы расстояние между ядрами приблизительно было равно 0,000 000 000 001 см. Однако этому препятствуют кулоновские силы. Они могут быть преодолены при наличии у ядер большой кинетической энергии. Особенно большое практическое значение имеет то, что при термоядерной реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции. Например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ, а при делении ядра урана на один нуклон приходится примерно 0,9 МэВ.

    Cлайд 4

    Управляемая термоядерная реакция - энергетически выгодная реакция. Однако она может идти лишь при очень высоких температурах (порядка несколько сотен млн. градусов). При большой плотности вещества такая температура может быть достигнута путем создания в плазме мощных электронных разрядов. При этом возникает проблема - трудно удержать плазму. Самоподдерживающиеся термоядерные реакции происходят в звездах.

    Cлайд 5

    В настоящее время в России и ряде других стран ведутся работы по осуществлению управляемой термоядерной реакции. Энергетический кризис стал реальной угрозой для человечества. В связи с этим ученые предложили добывать изотоп тяжелого водорода - дейтерий - из морской воды и подвергать реакции ядерного расплава при температурах около 100 миллионов градусов Цельсия. При ядерном расплаве дейтерий, полученный из одного килограмма морской воды будет способен произвести столько же энергии, сколько выделяется при сжигании 300 литров бензина

    Cлайд 6

    ТОКАМАК (тороидальная магнитная камера с током) – это электрофизическое устройство, основное назначение которого – формирование плазмы, что возможно при температурах около 100 млн. градусов, и сохранение её достаточно долгое время в заданном объеме. Возможность получения плазмы при сверхвысоких температурах позволяет осуществить термоядерную реакцию синтеза ядер гелия из исходного сырья, изотопов водорода (дейтерия и трития). В ходе реакции должна выделяться энергия, которая будет существенно больше, чем энергия, затрачиваемая на формирование плазмы.

    Cлайд 7

    Основы теории управляемого термоядерного синтеза заложили в 1950 году И. Е. Тамм и А. Д. Сахаров, предложив удерживать магнитным полем горячую плазму, образовавшуюся в результате реакций. Эта идея и привела к созданию термоядерных реакторов - токамаков. При большой плотности вещества требуемая высокая температура в сотни млн. градусов может быть достигнута путем создания в плазме мощных электронных разрядов. Проблема: трудно удержать плазму.

    Туманов Павел

    Синтез лёгких ядер. Создание и принцип действия водородной бомбы.

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Презентация по физике на тему: «Термоядерные реакции» у ченика 11 «А» класса ГБОУ СОШ № 1465 Туманова Павла Учитель физики Л.Ю. Круглова

    Термоядерные реакции Термоядерная реакция - разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения.

    Происхождение термина Для того чтобы произошла ядерная реакция, исходные атомные ядра должны преодолеть так называемый « кулоновский барьер » - силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин «термоядерная реакция».

    Кулоновский барьер Кулоновский барьер - потенциальный барьер, который необходимо преодолеть атомным ядрам (которые заряжены положительно) для того, чтобы сблизиться друг с другом для возникновения притяжения, вызванного короткодействующим сильным взаимодействиям кулонов (ядерными силами). Кулоновский барьер есть следствие того, что, согласно закону Кулона, одноимённо заряженные тела отталкиваются. На малых расстояниях ядерные силы между двумя протонами сильнее кулоновских сил, расталкивающих одноимённо заряженные частицы; однако ядерные силы убывают с ростом расстояния значительно быстрее кулоновских сил. В результате зависимость суммарного потенциала взаимодействия ядер от расстояния имеет максимум (вершину кулоновского барьера) на некотором расстоянии.

    Мюонный катализ Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов. Мюоны µ − вступая в взаимодействие с термоядерным топливом образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер. Мюон – элементарная частица, образующаяся в космическом излучении на высоте 300км над поверхностью земли.

    Термоядерные реакции (1)D+T→ 4He(3.5 MeV)+ n(14.1 MeV) (2а)D+D→ T(1.01 MeV)+ p(3.02 MeV) (2б) → 3He(0.82 MeV)+ n(2.45 MeV) (3)D+3He→ 4He(3.9 MeV)+ p(14.7 MeV) (4)T+T→ 4He +2 n+ 11.3 MeV (5)3He+3He→ 4He +2 p (6а)3He+T→ 4He + p +n+ 12.1 MeV (6б) → 4He(4.8 MeV)+ D(9.5 MeV) (6в) → 4He(0.5 MeV)+ n(1.9 MeV)+p(11.9 MeV)

    Водородная бомба Термоядерное оружие (она же водородная бомба) - тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется колоссальное количество энергии.

    Общее описание Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6 . Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, Li-6 - единственный промышленный источник получения трития:

    В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

    Триггер Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

    Контейнер с термоядерным горючим Контейнер с термоядерным горючим - основной элемент бомбы. Внутри него находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 - вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

    A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

    История Первая в мире водородная бомба - советская РДС-6 была взорвана 12 августа 1953 года на полигоне в Семипалатинске. 1 ноября 1952 года США взорвали первый термоядерный заряд на атолле Эниветок. Устройство, испытанное США в 1952 году, фактически не являлось «бомбой», а представляла собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же ученые разработали именно бомбу - законченное устройство, пригодное к практическому применению. РДС-6

    Самая крупная когда-либо взорванная водородная бомба - советская 58-мегатонная « царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила. Царь-бомба

    Использованные материалы: Википедия Google.ru