Понятие имитационной модели. Понятие имитационного моделирования. Структура и виды имитационного моделирования. Имитационные модели Что может быть объектом для имитационного моделирования

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Имитационные модели представляют собой довольно сложные программы для компьютера, описывающие поведение компонентов системы и взаимодействие между ними. Расчеты по этим программам при различных исходных данных позволяют имитировать динамические процессы, происходящие в реальной системе.

В результате исследования модели, являющейся аналогом реального объекта, получают количественные характеристики, отображающие его поведение при заданных условиях (исходных данных).

Изменяя исходные данные моделирования, можно получить достоверную информацию о поведении объекта в той или иной ситуации. Эти данные впоследствии могут быть использованы для разработки теории поведения объекта.

Имитационные модели в некоторой степени напоминают физические модели, т.е. модели реальных объектов в миниатюре. Например, существует физическая модель Братской ГЭС, в которой воспроизведены все реальные условия ее работы в уменьшенном масштабе. Задавая различные скорости течения воды, меняя условия прохождения водного потока через колеса гидроагрегатов, донные и сливные отверстия, ученые измеряют различные параметры водных потоков, оценивают устойчивость сооружений станций, степень размыва речного дна, берегов и дают заключения о наилучших режимах работы ГЭС. Примерно так же происходит процесс имитационного моделирования. Разница заключается только в том, что вместо потоков воды используются потоки информации о движении воды, вместо показаний физических приборов - данные, полученные с помощью ЭВМ. Конечно, имитационный эксперимент менее нагляден, чем физический опыт, но его возможности гораздо шире, так как в имитационной модели фактически допустимы любые изменения, каждый фактор можно варьировать по усмотрению исследователя, ошибки, возникающие в модели или исходных данных, легче заметить.

Математический аппарат, используемый для построения имитационных моделей, может быть самым разнообразным, например: теория массового обслуживания, теория агрегативных систем, теория автоматов, теория дифференциальных уравнений и пр. Имитационные исследования обычно требуют статистической обработки результатов моделирования, поэтому в основу всякой имитации входят методы теории вероятностей и математической статистики.

Имитационное моделирование является многоэтапным процессом и связано с оценкой полученных результатов, изменением структуры модели, целей и критериев моделирования. Для изучения полученных экспериментальных данных необходима группа людей (экспертов), обладающих знаниями в областях, непосредственно относящихся к объекту исследования.

Экспертные процедуры используют коллективный опыт людей и предназначены для усреднения мнений и получения объективной оценки какого-либо события или явления. Проведение экспертиз в большинстве случаев позволяет выработать определенные решения оценить относительную важность ряда событий или найти пропорции между показателями. Например, экспертам, занятым планированием в сфере обслуживания населения, может быть задан вопрос: «В каком отношении (пропорции) должны развиваться отрасли сферы обслуживания населения с точки зрения объемов реализации услуг?» При ответе на вопрос каждому эксперту предлагается проставить коэффициенты относительной важности, или баллы, каждой отраслевой группы обслуживания, например, в такой форме:

Для определения пропорций развития отраслевых групп обслуживания экспертам раздают анкеты определенного образца и предлагают ознакомиться со «сценарием» развития сферы обслуживания населения. «Сценарий» представляет собой своего рода прогноз состояния развития общественных потребностей на длительную перспективу, включая численность населения, его доходы и расходы по статьям затрат, жилищные условия, внедрение в практику новой техники и технологий, совершенствование видов и форм обслуживания населения, методов организации и управления обслуживанием и т.п.

После ознакомления со «сценарием» эксперты выражают свое мнение в виде баллов. Затем анкеты собирают и результаты экспертного анализа (допустим, баллы, приведенные в примере) усредняют по каждой отраслевой группе и нормируют, т.е. баллы по каждой отраслевой группе делят на их общую сумму. Полученные нормированные баллы отражают желаемые пропорции развития отраслевых групп обслуживания.

Существует большое количество форм и методов проведения экспертных анализов. Например, можно собирать группы экспертов для обсуждения рассматриваемых вопросов. Анкеты могут быть посланы эксперту домой (на работу), и тогда оценки отразят его мнение без посторонних влияний и дискуссий. Можно осуществить учет компетентности эксперта, проставив ему соответствующий «вес», аналогичный баллам.

При оценке качества функционирования какой-либо имитационной модели эксперты определяют, какие параметры модели главные, а какие - второстепенные; устанавливают желаемые пределы изменения параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта также входит изменение условий моделирования, если это необходимо, выбор и корректировка целей моделирования в тех случаях, когда после проведения модельных экспериментов выявляются новые неучтенные факторы.

Как правило, работа экспертов или экспертных групп связана с обработкой данных на ЭВМ, оценкой результатов, полученных после моделирования какой-либо задачи, т.е. основана на общении членов экспертной группы с ЭВМ при помощи специальных языков.

Общение человека-эксперта с компьютером при имитации «больших систем» требуется в двух случаях. В первом случае, когда имитационная модель не использует формальный математический аппарат и представляет собой в основном процесс экспертной оценки совокупности содержательных событий или целей, для общения применяют типовые пакеты Excel, Word и т.п. Процесс общения эксперта с ЭВМ при подсчете средних баллов или коэффициентов, оценивающих те или иные события, цели, осуществляется согласно методике экспертного анализа. Здесь применение ЭВМ минимально. Во втором случае, когда имитационную модель используют для изучения функционирования какого-либо сложного объекта, например производственного предприятия, банка или рынка, путем машинной имитации информационных процессов при заданных условиях, модель записывается на одном из специальных имитационных языков, например JPSS, Симскрипт, Симула, Динамо, MathCad plus и пр.

Важным преимуществом таких языков является наличие в них методов нахождения ошибок, значительно превосходящих соответствующие возможности универсальных языков. Однако применение специальных имитационных языков налагает ограничения на форму вывода информации о поведении моделируемой системы. Использование универсального языка типа Фортран меньше всего ограничивает форму вывода данных. Наоборот, использование языка типа Симскрипт вынуждает приспосабливаться к требованиям, налагаемым этим языком. Поэтому в сложных имитационных системах для общения экспертов с имитационной моделью используют различные языки. При описании процессов в имитируемой системе могут быть применены такие языки, как JPSS, Симскрипт, Симула, Динамо, а для описания различных «сервисных» и выводных процедур - универсальные языки Фортран, PL, Алгол, а также пакеты Excel, Word и т.п.

Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

1. Понятие имитационного моделирования

Имитационное моделирование – это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.

Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.

В отличие от математических моделей, представляющих собой аналитические зависимости, которые можно исследовать с помощью достаточно мощного математического аппарата, имитационные модели, как правило, позволяют проводить на них лишь одиночные испытания, аналогично однократному эксперименту на реальном объекте. Поэтому для более полного исследования и получения необходимых зависимостей между параметрами требуются многократные испытания модели, число и продолжительность которых во многом определяются возможностями используемой ЭВМ, а также свойствами самой модели.

Использование имитационных моделей оправдано в тех случаях, когда возможности методов исследования системы с помощью аналитических моделей ограничены, а натурные эксперименты по тем или иным причинам нежелательны или невозможны.

Даже в тех случаях, когда создание аналитической модели для исследования конкретной системы в принципе возможно, имитационное моделирование может оказаться предпочтительным по затратам времени ЭВМ и исследователя на проведение исследования. Для многих задач, возникающих при создании и функционировании АСУ, имитационное моделирование иногда оказывается единственным практически реализуемым методом исследования. Этим в значительной степени объясняется непрерывно возрастающий интерес к имитационному моделированию и расширение класса задач, для решения которых оно применяется.

Методы имитационного моделирования развиваются и используются в основном в трех направлениях: разработка типовых методов и приемов создания имитационных моделей; исследование степени подобия имитационных моделей реальным системам; создание средств автоматизации программирования, ориентированных на создание комплексов программ для имитационных моделей.

Различают два подкласса систем, ориентированных на системное и логическое моделирование. К подклассу системного моделирования относят системы с хорошо развитыми общеалгоритмическими средствами; с широким набором средств описания параллельно выполняемых действий, временных последовательностей выполнения процессов; с возможностями сбора и обработки статистического материала. В таких системах используют специальные языки программирования и моделирования – СИМУЛА, СИМСКРИПТ, GPSS и др. Первые два из этих языков являются подмножествами процедурно-ориентированных языков программирования типа ФОРТРАН, ПЛ/1, расширенными средствами динамических структур данных, операторами управления квазипараллельными процессами, специальными средствами сбора статистики и обработки списков. Эти дополнительные возможности позволяют вести статистические исследования моделей, поэтому такие системы иногда называют системами статистического моделирования.

К подклассу логического моделирования относят системы, позволяющие в удобной и сжатой форме отражать логические и топологические особенности моделируемых объектов, обладающие средствами работы с частями слов, преобразования форматов, записи микропрограмм. К этому подклассу систем относят языки программирования АВТОКОД, ЛОТИС и др.

В большинстве случаев при имитационном моделировании экономических, производственных и других организационных систем управления исследование модели заключается в проведении стохастических экспериментов. Отражая свойства моделируемых объектов, эти модели содержат случайные переменные, описывающие как функционирование самих систем, так и воздействия внешней среды. Поэтому наибольшее распространение получило статистическое моделирование.

Имитационная модель характеризуется наборами входных переменных

наблюдаемых или управляемых переменных

управляющих воздействий

возмущающих воздействий

Состояние системы в любой момент времени

и начальные условия Y(t0), R(t0), W(t0) могут быть случайными величинами, заданными соответствующим распределением вероятностей. Соотношения модели определяют распределение вероятностей величин в момент t + ∆t:

Существуют два основных способа построения моделирующего алгоритма – принцип ∆t и принцип особых состояний.

Принцип ∆t. Промежуток времени (t0, t), в котором исследуется поведение системы, разбивают на интервалы длиной ∆t. В соответствии с заданным распределением вероятностей для начальных условий по априорным соображениям или случайным образом выбирают для начального момента t0 одно из возможных состояний z0(t0). Для момента t0 + ∆t вычисляется условное распределение вероятностей состояний (при условии состояния z0(t0)). Затем аналогично предыдущему выбирают одно из возможных состояний z0(t0 + ∆t), выполняют процедуры вычисления условного распределения вероятностей состояний для момента t0 + 2∆t и т.д.

В результате повторения этой процедуры до момента t0 + n∆t = T получают одну из возможных реализаций исследуемого случайного процесса. Таким же образом получают ряд других реализаций процесса. Описанный способ построения моделирующего алгоритма занимает много машинного времени.

Принцип особых состояний. Все возможные состояния системы Z(t) = {zi(t)} разбивают на два класса – обычные и особые. В обычных состояниях характеристики zi(t) меняются плавно и непрерывно. Особые состояния определяются наличием входных сигналов или выходом, по крайней мере, одной из характеристик zi(t) на границу области существования. При этом состояние системы меняется скачкообразно.

Моделирующий алгоритм должен предусматривать процедуры определения моментов времени, соответствующих особым состояниям, и величин характеристик системы в эти моменты. При известном распределении вероятностей для начальных условий выбирают одно из возможных состояний и по заданным закономерностям изменений характеристик zi(t) находят их величины перед первым особым состоянием. Таким же образом переходят ко всем последующим особым состояниям. Получив одну из возможных реализаций случайного многомерного процесса, с использованием аналогичных процедур строят другие реализации. Затраты машинного времени при использовании моделирующего алгоритма по принципу особых состояний обычно меньше, чем по принципу ∆t.

Имитационное моделирование используют в основном для следующих применений:

1) при исследовании сложных внутренних и внешних взаимодействий динамических систем с целью их оптимизации. Для этого изучают на модели закономерности взаимосвязи переменных, вносят в модель изменения и наблюдают их влияние на поведение системы;

2) для прогнозирования поведения системы в будущем на основе моделирования развития самой системы и ее внешней среды;

3) в целях обучения персонала, которое может быть двух типов: индивидуальное обучение оператора, управляющего некоторым технологическим процессом или устройством, и обучение группы людей, осуществляющих коллективное управление сложным производственным или экономическим объектом.

В системах обоих типов комплекс программ задает некоторую обстановку на объекте, однако между ними имеется существенное различие. В первом случае программное обеспечение имитирует функционирование объектов, описываемых технологическими алгоритмами или передаточными функциями; модель ориентирована на тренировку психофизиологических характеристик человека, поэтому такие модели называются тренажерами. Модели второго типа гораздо сложнее. Они описывают некоторые аспекты функционирования предприятия или фирмы и ориентированы на выдачу некоторых технико-экономических характеристик при воздействии на входы чаще всего не отдельного человека, а группы людей, выполняющих различные функции управления;

4) для макетирования проектируемой системы и соответствующей части управляемого объекта с целью прикидочной проверки предполагаемых проектных решений. Это позволяет в наиболее наглядной и понятной заказчику форме продемонстрировать ему работу будущей системы, что способствует взаимопониманию и согласованию проектных решений. Кроме того, такая модель позволяет выявить и устранить возможные неувязки и ошибки на более ранней стадии проектирования, что на 2–3 порядка снижает стоимость их исправления.

построении математических моделей для описания изучаемых процессов;
  • использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.
  • Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты , начальные и граничные условия, исследовать, как при этом будет вести себя объект . Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

    Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

    В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование .

    Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

    Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течение заданного периода.

    Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

    "Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и " моделирование " - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

    Основное достоинство ИМ:

    1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;
    2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;
    3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

    Эти достоинства обеспечивают имитационному методу широкое распространение.

    1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.
    2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.
    3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.
    4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).
    5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.
    6. При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.
    7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.
    8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

    Однако ИМ наряду с достоинствами имеет и недостатки:

    1. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.
    2. Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.
    3. Зачастую исследователи обращаются к ИМ, не представляя тех трудностей, с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

    И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

    Одним из видов имитационного моделирования является статистическое имитационное моделирование , позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.

    При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели .

    В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу . Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

    Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях .

    В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

    В связи с перечисленными трудностями, возникающими при изучении сложных систем аналитическими методами, практика потребовала более гибкий и мощный метод. В результате в начале 60-х гг. прошлого века появилось имитационное моделирование (Modeling&Simulation).

    Как уже говорилось, под имитационным моделированием мы

    будем понимать не просто разработку модели, а комплексный процесс ИИСС. Это постановка задачи исследования, формализация функционирования системы, отдельных ее элементов и правил взаимодействия между ними, разработка модели, накопление и наполнение модели данными, проведение исследования и выработка методических рекомендаций по вопросам существования и модернизации системы.

    Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на компьютере) и последующий статистический анализ полученных результатов. В целом имитационное моделирование подразумевает исполнение процессов создания программной модели и проведение с этой программой последовательных и целенаправленных экспериментов, осуществляемых пользователем на компьютере. Следует отметить, что имитационная модель является программным представлением формального описания системы. Она отражает только часть системы, которую удалось формализовать и описать с помощью программы. При этом пользователь в модель может включить (и чаще всего это так и происходит) только часть формального описания. Случается это прежде всего из-за вычислительных возможностей доступного для использования компьютера, сложностей программной реализации, необходимостью детального исследования только некоторых частей системы, отсутствияем необходимых исходных данных для моделирования и т.д.

    Еще раз подтвердим, что при создании имитационной модели исследователь выполняет все процедуры, присущие системному анализу, - формулирует цель исследования, создает формальное описание функционирования системы с использованием одного из подходов (состав, структура, алгоритмы работы, показатели), программирует модель на одном из языков имитационной модели, проводит эксперименты с моделью, формулирует выводы и рекомендации.

    В самом общем виде уровень детализации имитационной модели, в проекции на ее существующее формальное описание, представлено на рис. 1.8.

    Преимущества имитационного моделирования перед другими методами системного анализа заключаются в следующем:

    Возможность создать большую близость к реальной системе, чем с использованием аналитических моделей, - детализация,

    Рис. 1.8.

    терминология, интерфейс пользователя, представление исходных данных и результатов;

    • - блочный принцип построения и отладки модели. Такой подход дает возможность верифицировать каждый блок модели до его включения в общую модель системы и реализовать поэтапное создание и исполнение модели;
    • - использование в модели зависимостей более сложного характера (в том числе и случайных), не описываемых простыми математическими соотношениями, за счет применения численных методов;
    • - неограниченный уровень детализации системы. Он сдерживается только потребностями задачи, возможностями компьютера и системы моделирования, а также способностями самого пользователя описать систему;
    • - возможность проведения экспериментов с программной моделью, а не с системой, что спасает нас от многих ошибок и экономит реальные средства;
    • - проверка форс-мажорных обстоятельств, которые на реальной системе проверять сложно, а чаще всего невозможно;
    • - моделирование позволяет проводить исследование не существующей еще системы. Например, целесообразности модернизации (либо расширения, либо уменьшения существующей системы).

    Перечисленные достоинства определяют недостатки и некоторые дополнительные сложности, присущие любым процессам, в том числе и при применении имитационной модели. Нужно признать, что такие недостатки и сложности, действительно, существуют. К основным недостаткам имитационной модели можно отнести:

    • - построить имитационную модель по сравнению с аналитической моделью дольше, труднее и дороже;
    • - для работы с имитационной системой необходимо наличие подходящего по классу компьютера и соответствующего задаче языка имитационного моделирования;
    • - сложность построения диалога пользователя с моделью. Взаимодействие пользователя и имитационной модели (интерфейс) должно быть простым, удобным и соответствовать предметной области, а это требует дополнительного объема программирования;
    • - построение имитационной модели требует более глубокого, длительного и детального изучения реального процесса (так как модель более детальная), нежели математическое моделирование.

    При применении имитационной модели в качестве исследуемой системы может выступать абсолютно любой субъект экономики - конкретное предприятие (или его составляющая), крупный инфраструктурный проект, отрасль производства, технология и т.д. Посредством имитационной модели анализу может быть подвергнута любая система массового обслуживания, как и любая другая система, имеющая некоторое число дискретных состояний и логику их взаимосвязи. Переход во времени из одного состояния в другое обеспечивается в силу ряда условий и причин (детерминированных и случайных). Главное отличие метода имитационного моделирования от других методов состоит в практически ничем не ограниченной степени детализации систем и, как следствие, в возможности представить систему для исследователя так, как она «выглядит» в жизни.

    При использовании имитационного моделирования можно проверить и получить ответ на множество вопросов типа, например: что будет, если:

    • - построить новую систему тем или иным способом;
    • - провести ту или иную реорганизацию системы;
    • - изменить поставщиков сырья, материалов и комплектующих;
    • - модернизировать логистические цепочки их поставки;
    • - увеличить (уменьшить) объемы ресурсов, количество персонала и оборудования;
    • - изменить технологию обработки или обслуживания?

    С точки зрения практического применения самое главное состоит в том, что в результате моделирования можно:

    • - уменьшить экономические и организационные издержки предприятий и проектов;
    • - обнаружить узкие места системы и проверить различные варианты по их устранению;
    • - увеличить пропускную способность системы;
    • - снизить экономические, организационные, технологические и другие риски предприятий и проектов.

    Отметим, достичь всего этого можно без проведения экспериментов над самой реальной системой, а исследуя только ее программную модель. Это позволяет избежать множества системных ошибок, социальных проблем и провести такие эксперименты, которые могли бы быть губительны для реальной системы.

    Конечно, использование имитационной модели в повседневной практике не обязательно и в России не регламентировано никакими нормами и законами. Хотя определенные усилия по созданию нормативной базы имитационной модели сейчас предпринимаются.

    Сейчас, к сожалению, во многих случаях системы создаются, модернизируются и эксплуатируются без применения метода имитационной модели. Каждый разработчик или собственник системы вправе самостоятельно принимать решение об использовании имитационной модели.

    Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а, следовательно, будет ли он включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.

    Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т.е. оно зависит не только от цели обработки модели, но и от того, кто именно определяет систему.

    Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов. Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.

    Имитационное моделирование (в широком смысле) - есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках накладываемых ограничений) различные стратегии, обеспечивающие функционирование данной системы.

    Имитационное моделирование (в узком смысле) - это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо известными операционными правилами (алгоритмами).

    Итак, для создания имитационной модели надо выделить и описать состояния системы и алгоритмы (правила) его изменения. Далее это записывается в терминах некоторого инструментального средства моделирования (алгоритмического языка, специализированного языка) и обрабатывается на ЭВМ.

    Имитационная модель (ИМ)- это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на цифровой ЭВМ.

    ИМ могут использоваться для проектирования, анализа и оценки функционирования систем. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

    · в отсутствии ее построения, если это проектируемая система;

    · без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (высокие затраты, опасность);

    · без разрушения системы, если цель эксперимента состоит в определении воздействия на нее.

    Процесс формирования имитационной модели коротко можно представить следующим образом (Рис.2 ):

    Рис.2 . Схема формирования имитационной модели

    Вывод: для ИМ характерно воспроизведение явлений, описываемых формализированной схемой процесса, с сохранением их логической структуры, последовательности чередования во времени, а иногда и физического содержания.

    Имитационное моделирование (ИМ) на ЭВМ находит широкое применение при исследовании и управлении сложными дискретными системами (СДС) и процессами, в них протекающими. К таким системам можно отнести экономические и производственные объекты, морские порты, аэропорты, комплексы перекачки нефти и газа, ирригационные системы, программное обеспечение сложных систем управления, вычислительные сети и многие другие. Широкое использование ИМ объясняется тем, что размерность решаемых задач и неформализуемость сложных систем не позволяют использовать строгие методы оптимизации.

    Под имитацией будем понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительного времени.

    Имитационный эксперимент представляет собой отображение процесса, протекающего в СДС в течение длительного отрезка времени (минута, месяц, год и т.д.), что занимает, как правило, несколько секунд или минут времени работы ЭВМ. Однако существуют задачи, для решения которых необходимо проводить так много вычислений при моделировании (как правило, это задачи, связанные с системами управления, моделированием поддержки принятия оптимальных решений, отработки эффективных стратегий управления и т.п.), что ИМ работает медленнее реальной системы. Поэтому возможность за короткое время промоделировать длительный период работы СДС не самое главное, что обеспечивает имитация.

    Возможности имитационного моделирования:

    1. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

    · без ее построения, если это проектируемая система;

    · без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (дорого, опасно);

    · без ее разрушения, если цель эксперимента состоит в определении предельного воздействия на систему.

    2. Экспериментально исследовать сложные взаимодействия внутри системы и понять логику ее функционирования.

    4. Изучить воздействие внешних и внутренних случайных возмущений.

    5. Исследовать степень влияния параметров системы на показатели эффективности.

    6. Проверить новые стратегии управления и принятия решений при оперативном управлении.

    7. Прогнозировать и планировать функционирование системы в будущем.

    8. Проводить обучение персонала.

    Основой имитационного эксперимента служит модель имитируемой системы.

    ИМ развивалось для моделирования сложных стохастических систем - дискретных, непрерывных, комбинированных.

    Моделирование означает, что задаются последовательные моменты времени и состояние модели вычисляется ЭВМ последовательно в каждый из этих моментов времени. Для этого необходимо задать правило (алгоритм) перехода модели из одного состояния в следующее, то есть преобразование:

    где - состояния модели в - ый момент времени, представляющее собой вектор.

    Введем в рассмотрение:

    Вектор состояния внешней среды (вход модели) в -ый момент времени,

    Вектор управления в -ый момент времени.

    Тогда ИМ определяется заданием оператора , с помощью которого можно определить состояние модели в следующий момент времени по состоянию в текущий момент, векторам управления и внешней среды:

    Это преобразование запишем в рекуррентной форме:

    Оператор определяет имитационную модель сложной системы с ее структурой и параметрами.

    Важное достоинство ИМ - возможность учета неконтролируемых факторов моделируемого объекта, представляющих собой вектор:

    Тогда имеем:

    Имитационная модель – это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на ЭВМ.

    Рис.3. Состав ИМ сложной системы

    Возвращаясь к проблеме имитационного моделирования сложной системы, условно выделим в ИМ: модель управляемого объекта, модель системы управления и модель внутренних случайных возмущений (Рис.3 ).

    Входы модели управляемого объекта делятся на контролируемые управляемые и неконтролируемые неуправляемые возмущения. Последние генерируются датчиками случайных чисел по заданному закону распределения. Управление, в свою очередь является выходом модели системы управления, а возмущения – выходом датчиков случайных чисел (модели внутренних возмущений).

    Здесь - алгоритм системы управления.

    Имитация позволяет исследовать поведение моделируемого объекта в течение продолжительного интервала времени – динамическая имитация . В этом случае как говорилось выше трактуется как номер момента времени. Кроме этого можно исследовать поведение системы в определенный момент времени – статическая имитация , тогда трактуется как номер состояния.

    При динамической имитации время может меняться с постоянным и переменным шагом (Рис.4 ):

    Рис.4. Динамическая имитация

    Здесь g i – моменты совершения событий в СДС, g * i – моменты совершения событий при динамической имитации с постоянным шагом, g ‘ i - моменты совершения событий при переменном шаге.

    С постоянным шагом проще реализация, но меньше точность и могут быть пустые (то есть лишние) точки времени, когда рассчитывается состояние модели.

    С переменным шагом время переходит от события к событию. Этот способ – более точное воспроизведение процесса, нет лишних расчетов, однако его труднее реализовать.

    Основные положения , вытекающие из сказанного:

    1. ИМ это численный метод и должен применяться тогда, когда другие методы использовать невозможно. Для сложных систем это в данный момент основной метод исследования.

    2. Имитация это эксперимент, а значит, при ее проведении должна использоваться теория планирования эксперимента и обработки его результатов.

    3. Чем более точно описывается поведение моделируемого объекта, тем точнее требуется модель. Чем точнее модель, тем она сложнее и требует больших ресурсов ЭВМ и времени для исследования. Поэтому надо искать компромисс между точностью модели и ее простотой.

    Примеры решаемых задач: анализ проектов систем на различных стадиях, анализ действующих систем, использование в системах управления, использование в системах оптимизации и т.д.