Запоминаем и применяем свойства трапеции. Углы равнобедренной трапеции Как найти углы в прямоугольной трапеции

Трапеция - это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они называются основаниями трапеции , а две другие стороны - боковыми сторонами трапеции .

Инструкция

Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции . Пусть известны углы &ang-BAD и &ang-CDA, найдем углы &ang-ABC и &ang-BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°-. Тогда &ang-ABC = 180°--&ang-BAD, а &ang-BCD = 180°--&ang-CDA.

трапеции" class="lightbx" data-lightbox="article-image">

В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол &ang-CAD = α-.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда &ang-BAC = &ang-BCA. Обозначим его x для краткости, а &ang-ABC - y. Сумма углов любого треугольник а равна 180°-, из этого следует, что 2x + y = 180°-, тогда y = 180°- - 2x. В то же время из свойств трапеции : y + x + α- = 180°- и следовательно 180°- - 2x + x + α- = 180°-. Таким образом, x = α-. Мы нашли два угла трапеции : &ang-BAC = 2x = 2α- и &ang-ABC = y = 180°- - 2α-.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит,

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению , как говориться: куда мы без теоремы Пифагора, ?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, .

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

Рассмотрим задачи:

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

Таким образом:

Ответ: 0,96

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:


27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

Можем вычислить высоту трапеции, а затем найти катет:

По теореме Пифагора вычисляем катет:

Таким образом, меньшее основание равно:

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее основание разбивается на отрезки:

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:


Таким образом большее основание будет равно:

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

По определению тангенса:

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

Выразим гипотенузу обозначенную как х через косинус:

Из основного тригонометрического тождества найдём cosα

Таким образом:

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50 0 ? Ответ дайте в градусах.

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 180 0 . В нашем случае это

C условии сказано, что разность противолежащих углов равна 50 0 , то есть

Трапеция – это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они именуются основаниями трапеции , а две другие стороны – боковыми сторонами трапеции .

Инструкция

1. Задача нахождения произвольного угла в трапеции требует довольного числа дополнительных данных. Разглядим пример, в котором знамениты два угла при основании трапеции . Пускай вестимы углы ∠BAD и ∠CDA, обнаружим углы ∠ABC и ∠BCD. Трапеция владеет таким свойством, что сумма углов при всякой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.

2. В иной задаче может быть указано равенство сторон трапеции и какие-либо добавочные углы. Скажем, как на рисунке, может быть вестимо, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Разглядим треугольник ABC, он равнобедренный, потому что AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC – y. Сумма углов всякого треугольник а равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° – 2x. В то же время из свойств трапеции : y + x + α = 180° и следственно 180° – 2x + x + α = 180°. Таким образом, x = α. Мы обнаружили два угла трапеции : ∠BAC = 2x = 2α и ∠ABC = y = 180° – 2α.Потому что AB = CD по условию, то трапеция равнобокая либо равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° – 2α.

Диагональ многоугольника – отрезок, тот, что соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины либо не принадлежащие одной стороне многоугольника ). В параллелограмме, зная длину диагоналей и длину сторон, дозволено рассчитать углы между диагоналями .

Инструкция

1. Для комфорта воспринятия информации начертите на листе бумаги произвольный параллелограмм АВСD (параллелограмм – это четырехугольник, противоположные стороны которого попарно равны и параллельны). Объедините противоположные вершины отрезками. Полученные АС и ВD – диагонали. Обозначьте точку пересечения диагоналей буквой О. Нужно обнаружить углы ВОС (АОD) и СOD (АОВ).

2. Параллелограмм владеет целым рядом математических свойств:- диагонали точкой пересечения делятся напополам; – диагональ параллелограмма делит его на два равных треугольника ;- сумма всех углов в параллелограмме равна 360 градусов;- сумма углов, прилежащих к одной стороне параллелограмма, равна 180 градусам;- сумма квадратов диагоналей равна двойственный сумме квадратов его смежных сторон.

3. Дабы обнаружить углы между диагоналями , воспользуйтесь теоремой косинусов из теории элементарной геометрии (Евклидовой). Согласно теореме косинусов, квадрат стороны треугольника (A) дозволено получить, сложив квадраты 2-х его других сторон (B и C), и из полученной суммы вычесть двойное произведение этих сторон (B и C) на косинус угла между ними.

4. Применительно к треугольнику ВОС параллелограмма АВСD теорема косинусов будет выглядеть дальнейшим образом:Квадрат ВС = квадрат ВО + квадрат ОС – 2*ВО*ОС*cos угла ВOCОтсюда соs угла BOC = (квадрат ВС –квадрат ВО – квадрат ОС) / (2*ВО*ОС)

5. Обнаружив значение угла ВОС (АОD) легко вычислить значение иного угла, заключенного между диагоналями – СОD (АОВ). Для этого из 180 градусов вычтите значение угла ВОС (АОD) – т.к. сумма смежных углов равна 180 градусам, а углы ВОС и СОD и углы АОD и АОВ – смежные.

Видео по теме

Для решения этой задачи способами векторной алгебры, вам нужно знать следующие представления: геометрическая векторная сумма и скалярное произведение векторов, а также следует помнить качество суммы внутренних углов четырехугольника.

Вам понадобится

  • – бумага;
  • – ручка;
  • – линейка.

Инструкция

1. Вектор – это направленный отрезок, то есть величина, считающаяся заданной всецело, если задана его длина и направление (угол) к заданной оси. Расположение вектора огромнее ничем не ограничено. Равными считаются два вектора, владеющие идентичными длинами и одним направлением. Следственно при применении координат векторы изображают радиус-векторами точек его конца (предисловие располагается в начале координат).

2. По определению: результирующим вектором геометрической суммы векторов именуется вектор, исходящий из начала первого и имеющего конец в конце второго, при условии, что конец первого, совмещен с началом второго. Это дозволено продолжать и дальше, строя цепочку подобно расположенных векторов. Изобразите данный четырехугольник ABCD векторами a, b, c и d в соответствии рис. 1. Видимо, что при таком расположении результирующий вектор d=a+ b+c.

3. Скалярное произведение в данном случае комфортнее каждого определить на основе векторов a и d. Скалярное произведение, обозначаемое (a, d)= |a||d|cosф1. Тут ф1 – угол между векторами a и d. Скалярное произведение векторов, заданных координатами, определяется следующими выражением: (a(ax, ay), d(dx, dy))=axdx+aydy, |a|^2= ax^2+ ay^2, |d|^2= dx^2+ dy^2, тогда cos Ф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2)).

4. Основные представления векторной алгебры в привязке к поставленной задаче, приводят к тому, что для однозначной постановки этой задачи довольно задание 3 векторов, расположенных, возможен, на AB, BC, и CD, то есть a, b, c. Дозволено финально сразу задать координаты точек A, B, C, D, но данный метод является избыточным (4 параметра взамен 3-х).

5. Пример. Четырехугольник ABCD задан векторами его сторон AB, BC, CD a(1,0), b(1,1), c(-1,2). Обнаружить углы между его сторонами. Решение. В связи с высказанным выше, 4-й вектор (для AD) d(dx,dy)=a+ b+c={ax+bx +cx, ay+by+cy}={1,3}. Следуя методике вычисления угла между векторами аcosф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2))=1/sqrt(10), ф1=arcos(1/sqrt(10)).-cosф2=(axbx+ayby)/(sqrt(ax^2+ ay^2)sqrt(bx^2+ by^2))=1/sqrt2, ф2=arcos(-1/sqrt2), ф2=3п/4.-cosф3=(bxcx+bycy)/(sqrt(bx^2+ by^2)sqrt(cx^2+ cy^2))=1/(sqrt2sqrt5), ф3=arcos(-1/sqrt(10))=п-ф1. В соответствии с примечанием 2 – ф4=2п- ф1 – ф2- ф3=п/4.

Видео по теме

Обратите внимание!
Примечание 1. В определении скалярного произведения применяется угол между векторами. Тут, скажем, ф2 – это угол между АВ и ВС, а между a и b данный угол п-ф2. сos(п- ф2)=- сosф2. Подобно для ф3.Примечание 2. Знаменито, что сумма углов четырехугольника равна 2п. Следственно ф4=2п- ф1 – ф2- ф3.