Реакции опор примеры. Расчётные схемы балок и определение реакции их опор. Уравнения равновесия для моментов

Способы определения опорных реакций изучаются в курсе теоретической механики. Остановимся только практических вопросах методики вычисления опорных реакций, в частности для шарнирно опертой балки с консолью (рис. 7.4).

Нужно найти реакции: , и . Направления реакций выбираем произвольно. Направим обе вертикальные реакции вверх, а горизонтальную реакцию – влево.

Нахождение и проверка опорных реакций в шарнирной опоре

Для вычисления значений реакций опор составим уравнения статики:

Сумма проекций всех сил (активных и реактивных) на ось z равна нулю: .

Поскольку на балку действуют только вертикальные нагрузки (перпендикулярные к оси балки), то из этого уравнения находим: горизонтальная реакция неподвижной .

Сумма моментов всех сил относительно опоры А равна нулю: .

Для момента силы: считаем момент силы положительным, если он вращает балку относительно точки против хода часовой стрелки.

Необходимо найти равнодействующую распределенной . Распределенная погонная нагрузка равна площади распределенной нагрузки и приложена в этой эпюры (посредине участка длиной ).

Сумма моментов всех сил относительно опоры B равна нулю: .

Знак «минус» в результате говорит: предварительное направление опорной реакции было выбрано неверно. Меняем направление этой опорной реакции на противоположное (см. рис. 7.4) и про знак «минус» забываем.

Проверка опорных реакций

Сумма проекций всех сил на ось y должна быть равна нулю: .

Силы, направление которых совпадает с положительным направлением оси y, проектируются на нее со знаком «плюс».

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использо­вать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок

По способу приложения нагрузки делятся на

· сосредоточенные и

· распределенные.

Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной.

Часто нагрузка распределена по значительной площадке или ли­нии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределен­ную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

q - интенсивность на­грузки; I - длина стержня;

G = ql - равнодей­ствующая распределенной нагрузки.

Разновидности опор балочных систем (см. лекцию 1)

Балка - конструктивная деталь в виде прямого бруса, закреп­ленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной.

Жесткая заделка (защемление) (рис. 6.2)

Опора не допускает перемещений и поворотов. Заделку заменя­ют двумя составляющими силы Rax и и парой с моментом Mr.

Для определения этих неизвестных удобно использовать систему уравнений в виде

Каждое уравнение имеет одну неиз­вестную величину и решается без подста­новок.

Для контроля правильности решений используют дополни­тельное уравнение моментов относительно любой точки на балке, например

Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заме­нена двумя составляющими силы вдоль осей координат.

Балка на двух шарнирных опорах (рис. 6.5)



Не известны три силы, две из них - вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:

Составляются уравнения моментов относительно точек крепле­ния балки. Поскольку момент силы, проходящей через точку креп­ления, равен 0, в уравнении останется одна неизвестная сила.

Для контроля правильности решения используется дополни­тельное уравнение

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Примеры решения задач

Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.



Решение

2. В заделке может возникнуть реакция, представляемая двум: составляющими (R Ay ,R Ax ), и реактивный момент М A . Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

3. Используем систему уравнений:

Знаки полученных реакций (+), следовательно, направления ре­акций выбраны верно.

3. Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.



Решение

1. Левая опора (точка А) - подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.

Правая опора (точка В) - неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.

2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецеле­сообразно.

3. Заменяем распределенную нагрузку сосредоточенной:

G = ql; G = 2*6 = 12 кН.

Сосредоточенную силу помещаем в середине пролета, далее за­дача решается с сосредоточенными силами (рис. 6.8, б).

4. Наносим возможные реакции в опорах (направление произвольное).

5. Для решения выбираем уравнение равновесия в виде

6. Составляем уравнения моментов относительно точек крепления:

Реакция отрицательная, следовательно, R А y нужно направить н противоположную сторону.

7. Используя уравнение проекций, получим:

R Bx - горизонтальная реакция в опоре В.

Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.

8. Проверка правильности решения. Для этого используем чет­вертое уравнение равновесия

Подставим полученные значения реакций. Если условие выполнено, решение верно:

5,1 - 12 + 34,6 – 25 -0,7 = 0.

Пример 3. Опреде­лить опорные реакции балки, показанной на рис. 1.17, а .

Решение

Рассмотрим рав­новесие балки АВ. Отбросим опорное закрепление (задел­ку) и заменим его действие реакциями Н А, V A и т А (рис. 1.17, б ). Получили плоскую систему произвольно распо­ложенных сил.

Выбираем систему координат (рис. 1.17,6) и состав­ляем уравнения равновесия:

Составим проверочное уравнение

следовательно, реакции определены верно.

Пример 4. Для заданной балки (рис. 1.18, а ) определить опорные реакции.

Решение

Рассматриваем равновесие балки АВ. Отбра­сываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему про­извольно расположенных сил.


Выбираем систему координат (см. рис. 1.18,6) и со­ставляем уравнения равновесия:

q 1 ,

Расстояние от точки А q 1 (а + b);

Равнодействующая равномерно распреде­ленной нагрузки интенсивностью q 2 ;

Расстояние от точки А до линии действия равнодействующей q 2 (d - с).

Подставив числовые значения, получим

откуда V B = 28,8 кН;

- расстояние от точки В до линии действия равнодействующей q 1 (a+b);

- расстояние от точки В до линии действия равнодействующей q 2 (d - c).

откуда V A = 81,2 кН.

Составляем проверочное уравнение:

Пример 5. Для заданной стержневой системы (рис. 1.19, а ) определить усилия в стержнях.

Решение

Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.

На балку действуют равномерно распределенная на­грузка интенсивностью q, сила Р и сосредоточенный мо­мент т .

Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б ). Получили плоскую систему про­извольно расположенных сил.

Выбираем систему координат (см. рис. 1.19, б ) и со­ставляем уравнения равновесия:

Где q (a + b) - равнодействующая

равномерно распреде­ленной нагрузки интенсивностью q (на чертеже она показана штриховой ли­нией).

Подставив числовые значения, получим:

откуда N AC = 16 кН;

Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;

где N BD cos α N BD ", N BF cos β - вертикальная составляющая силы N BF (линии действия горизонтальных состав­ляющих сил N BD и N BF проходят через точку А и поэтому их моменты относи­тельно точки А равны нулю). Подставляя числовые значения и учитывая, что N BD = 1,41 N BF , получаем:

откуда N BF = 33,1 кН.

Тогда N BD = 1,41*33,1 = 46,7 кН.

Для определения усилий в стержнях не было исполь­зовано уравнение равновесия: ΣP to = 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, усилия в стержнях определены верно.

Пример 6. Для заданной плоской рамы (рис. 1.20, а ) определить опорные реакции

Решение

Освобождаем раму от связей и заменяем их действие реакциями N А, V A , V B (рис. 1.20, б ). Получили плоскую систему произвольно расположенных сил.


Выбираем систему координат (см. рис. 1.20, б ) и составляем уравнения равновесия:

где Р 2 cos α - вертикальная составляющая силы Р 2 ;

P 2 sin α - горизонтальная составляющая силы Р 2 ;

2qa - равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);

откуда V B = 5,27qa;

откуда H A =7qa

линия действия силы Р 2 cosα проходит через точку В и поэтому ее момент относительно точки В равен нулю

откуда V A = 7qa.

Для определения реакций не было использовано урав­нение равновесия ΣP iv =0. Если реакции определены верно, то сумма проекций на ось v всех сил, действую­щих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, опорные реакции определены верно.

Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.

Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и опре­делите расстояние от точки приложения равнодействующей до опо­ры А (рис. 6.9).

2. Рассчитайте величину суммарного момента сил системы от­носительно точки А (рис. 6.10).

3. Какую из форм уравнений равновесия целесообразно исполь­зовать при определении реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?


5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

Рассмотренный в § 2.7 свободный брус был нагружен заданными нагрузками (силами и моментами), находящимися в равновесии (см. рис. 3.7). Обычно заданные нагрузки не бывают взаимно уравновешенными; неподвижность конструкции под действием этих нагрузок обеспечивается благодаря наличию опор, соединяющих ее с основанием. В опорах возникают реакции, которые вместе с заданными нагрузками представляют уравновешенную систему внешних сил, действующих на конструкцию.

Как известно из курса теоретической механики, любое тело обладает в плоскости тремя степенями свободы. Поэтому для обеспечения геометрической неизменяемости системы (бруса) необходимо наложить на нее (в плоскости) три связи.

Рассмотрим различные типы опор плоских систем.

1. Защемление, или заделка (рис. 4.7, а). Защемленный (или заделанный) конец бруса не может ни смещаться поступательно, ни поворачиваться. Следовательно, число степеней свободы бруса с защемленным концом равно нулю. В опоре могут возникать: вертикальная реакция (сила R - рис. 4.7, а), препятствующая вертикальному смещению конца бруса; горизонтальная реакция (сила Н), исключающая возможность его горизонтального смещения и реактивный момент препятствующий повороту. Таким образом, закрепление бруса с помощью заделки накладывает на него три связи и обеспечивает его неподвижность.

2. Шарнирно неподвижная опора (рис. 4.7, б). Поперечное сечение бруса, проходящее через шарнирно неподвижную опору, не может смещаться поступательно. В опоре возникает реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила R, препятствующая вертикальному смещению, и горизонтальная сила Н, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью шарнирно неподвижной опоры, накладывает на него две связи.

3. Шарнирно подвижная опора (рис. 4.7, в). Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.

Рассмотренные типы опор принято также изображать с помощью стерженьков.

Шарнирно подвижную опору изображают в виде стерженька, имеющего по концам шарниры (рис. 5.7, а). Нижний шарнир неподвижен, а верхний может смещаться лишь по прямой линии, перпендикулярной к оси стерженька.


Это соответствует тем условиям закрепления, которые обеспечивает шарнирно подвижная опора (см. рис. 4.7, в). Опорная реакция действует только вдоль оси стерженька. Собственные деформации его при расчетах не учитываются, т. е. стерженек считается бесконечно жестким.

Шарнирно неподвижную опору изображают с помощью двух стерженьков с шарнирами по концам (рис. 5.7, б). Верхний шарнир является общим для обоих стерженьков. Направления стерженьков могут быть произвольными. Они, однако, не должны быть расположены на одной прямой.

Заделку (защемление) можно изображать с помощью трех стерженьков с шарнирами по концам, как показано на рис. 5.7, в.

Число стерженьков в схематическом изображении опоры равно числу составляющих опорной реакции и числу связей, накладываемых этой опорой на конструкцию.

Для того чтобы брус не перемещался под нагрузкой, он должен быть геометрически неизменяемо (неподвижно) соединен с основанием, что в случае плоского действия сил, как уже отмечалось, достигается путем наложения на него трех внешних связей.

Это можно сделать с помощью одной заделки (рис. 6.7, а) или одной шарнирно неподвижной и одной шарнирно подвижной опоры (рис. 6.7, б), или с помощью трех шарнирно подвижных опор, направления реакций которых не пересекаются в одной точке (рис. 6.7, в).

Если направления трех опорных стерженьков пересекаются в одной точке О (рис. 7.7, а,б), то система является мгновенно изменяемой, так как в этом случае ни один опорный стерженек не препятствует весьма малому повороту бруса вокруг точки О; такое расположение опорных стерженьков недопустимо.

Рассмотрим геометрически неизменяемые системы, состоящие из нескольких брусьев.

На рис. 8.7, а, например, показана система из двух брусьев (АВ и ВС), на каждый из которых наложено три связи. На брус ВС одну связь накладывает опорный стерженек CD, препятствующий вертикальному смещению точки С бруса, и две связи - шарнир В, препятствующий вертикальному и горизонтальному смещению точки В бруса.

На брус АВ все три связи налагает заделка А; шарнир же В не может препятствовать ни поступательным смещениям, ни поворотам бруса АВ и, следовательно, не налагает на него связей.

На рис. 8.7, б показана геометрически неизменяемая система, состоящая из трех брусьев (АС, CD и DF). На каждый из них наложено три связи. Так, например, шарнир С налагает на брус CD две связи (так как препятствует горизонтальному и вертикальному смещениям точки С), а шарнир - одну связь (так как препятствует только вертикальному смещению точки ).

Системы, изображенные на рис. 8.7, называются многопролетными шарнирными балками.

Общее число неизвестных опорных реакций при вариантах закрепления бруса, показанных на рис. 6.7, а, б, в, равно трем. Следовательно, эти реакции можно найти при помощи трех уравнений равновесия, которые составляются для плоской системы сил. По значениям же опорных реакций и внешних нагрузок можно определить [по формулам (2.7) - (4.7)] внутренние усилия в любом поперечном сечении бруса. Поэтому брус, закрепленный путем наложения на него трех связей, является не только геометрически неизменяемым, но и статически определимым. Наложение на него большего числа связей делает брус статически неопределимым, так как в этом случае все опорные реакции нельзя определить из одних лишь уравнений равновесия.

Уравнения равновесия, составляемые для определения опорных реакций, можно представить в трех различных вариантах:

1) в виде сумм проекций сил на две произвольные не параллельные друг другу оси и суммы моментов сил относительно любой точки плоскости МО);

2) в виде суммы проекций сил на произвольную ось и двух сумм моментов относительно любых точек плоскости, не лежащих на одном перпендикуляре к указанной оси проекций

3) в виде трех сумм моментов относительно любых точек плоскости, не лежащих на одной прямой

Выбор того или иного варианта составления уравнений равновесия, а также выбор точек и направлений осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не проводить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их значения рекомендуется подставить в какое-либо уравнение равновесия, не использованное ранее.

На многопролетную шарнирную балку, изображенную на рис. 8.7, а, наложено четыре внешние связи (три в сечении А и одна в сечении С), а на балку, изображенную на рис. 8.7, б, - пять внешних связей (две в сечении А и по одной в сечениях В, Е и F).

Однако если на каждый брус, составляющий многопролетную шарнирную балку, наложено по три связи, то эта балка статически определима и опорные реакции можно найти из уравнений статики.

Кроме трех уравнений равновесия всех сил, действующих на многопролетную шарнирную балку, составляются уравнения, выражающие равенство нулю моментов сил, приложенных по одну сторону от каждого шарнира (соединяющего отдельные части балки), относительно центра этого шарнира. Например, для балки, изображенной на рис. 8.7, а, кроме трех уравнений равновесия всех действующих на нее сил, составляется уравнение моментов левых (или правых) сил относительно шарнира , а для балки, изображенной на рис. 8.7,б, - относительно шарниров С и D.

Рассмотрим пример определения опорных реакций простой однопролетной балки, расчетная схема которой изображена на рис. 9.7, а. Отбросим опоры и заменим их влияние на балку опорными реакциями RA, Н и RB (рис. 9.7, б). Обычно балка с отброшенными опорами отдельно не изображается, а обозначения и направления опорных реакций указываются на расчетной схеме балки. Реакции представляют собой вертикальную и горизонтальную составляющие полной реакции шарнирно неподвижной опоры А; сила же является полной реакцией опоры В. Направления опорных реакций выбираются произвольно; если в результате расчета значение какой-либо реакции получается отрицательным, то, значит, в действительности ее направление противоположно предварительно принятому.

Аналогично составим сумму моментов всех сил относительно точки А:

Для проверки найденных значений опорных реакций составим сумму проекций всех сил на ось у.

Составленное уравнение удовлетворяется, что указывает на правильность определения опорных реакций.

Рассмотренный в § 2.7 свободный брус был нагружен заданными нагрузками (силами и моментами), находящимися в равновесии (см. рис. 3.7). Обычно заданные нагрузки не бывают взаимно уравновешенными; неподвижность конструкции под действием этих нагрузок обеспечивается благодаря наличию опор, соединяющих ее с основанием. В опорах возникают реакции, которые вместе с заданными нагрузками представляют уравновешенную систему внешних сил, действующих на конструкцию.

Как известно из курса теоретической механики, любое тело обладает в плоскости тремя степенями свободы. Поэтому для обеспечения геометрической неизменяемости системы (бруса) необходимо наложить на нее (в плоскости) три связи.

Рассмотрим различные типы опор плоских систем.

1. Защемление, или заделка (рис. 4.7, а). Защемленный (или заделанный) конец бруса не может ни смещаться поступательно, ни поворачиваться. Следовательно, число степеней свободы бруса с защемленным концом равно нулю. В опоре могут возникать: вертикальная реакция (сила R - рис. 4.7, а), препятствующая вертикальному смещению конца бруса; горизонтальная реакция (сила Н), исключающая возможность его горизонтального смещения и реактивный момент препятствующий повороту. Таким образом, закрепление бруса с помощью заделки накладывает на него три связи и обеспечивает его неподвижность.

2. Шарнирно неподвижная опора (рис. 4.7, б). Поперечное сечение бруса, проходящее через шарнирно неподвижную опору, не может смещаться поступательно. В опоре возникает реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила R, препятствующая вертикальному смещению, и горизонтальная сила Н, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью шарнирно неподвижной опоры, накладывает на него две связи.

3. Шарнирно подвижная опора (рис. 4.7, в). Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.

Рассмотренные типы опор принято также изображать с помощью стерженьков.

Шарнирно подвижную опору изображают в виде стерженька, имеющего по концам шарниры (рис. 5.7, а). Нижний шарнир неподвижен, а верхний может смещаться лишь по прямой линии, перпендикулярной к оси стерженька.

Это соответствует тем условиям закрепления, которые обеспечивает шарнирно подвижная опора (см. рис. 4.7, в). Опорная реакция действует только вдоль оси стерженька. Собственные деформации его при расчетах не учитываются, т. е. стерженек считается бесконечно жестким.

Шарнирно неподвижную опору изображают с помощью двух стерженьков с шарнирами по концам (рис. 5.7, б). Верхний шарнир является общим для обоих стерженьков. Направления стерженьков могут быть произвольными. Они, однако, не должны быть расположены на одной прямой.

Заделку (защемление) можно изображать с помощью трех стерженьков с шарнирами по концам, как показано на рис. 5.7, в.

Число стерженьков в схематическом изображении опоры равно числу составляющих опорной реакции и числу связей, накладываемых этой опорой на конструкцию.

Для того чтобы брус не перемещался под нагрузкой, он должен быть геометрически неизменяемо (неподвижно) соединен с основанием, что в случае плоского действия сил, как уже отмечалось, достигается путем наложения на него трех внешних связей.

Это можно сделать с помощью одной заделки (рис. 6.7, а) или одной шарнирно неподвижной и одной шарнирно подвижной опоры (рис. 6.7, б), или с помощью трех шарнирно подвижных опор, направления реакций которых не пересекаются в одной точке (рис. 6.7, в).

Если направления трех опорных стерженьков пересекаются в одной точке О (рис. 7.7, а,б), то система является мгновенно изменяемой, так как в этом случае ни один опорный стерженек не препятствует весьма малому повороту бруса вокруг точки О; такое расположение опорных стерженьков недопустимо.

Рассмотрим геометрически неизменяемые системы, состоящие из нескольких брусьев.

На рис. 8.7, а, например, показана система из двух брусьев (АВ и ВС), на каждый из которых наложено три связи. На брус ВС одну связь накладывает опорный стерженек CD, препятствующий вертикальному смещению точки С бруса, и две связи - шарнир В, препятствующий вертикальному и горизонтальному смещению точки В бруса.

На брус АВ все три связи налагает заделка А; шарнир же В не может препятствовать ни поступательным смещениям, ни поворотам бруса АВ и, следовательно, не налагает на него связей.

На рис. 8.7, б показана геометрически неизменяемая система, состоящая из трех брусьев (АС, CD и DF). На каждый из них наложено три связи. Так, например, шарнир С налагает на брус CD две связи (так как препятствует горизонтальному и вертикальному смещениям точки С), а шарнир - одну связь (так как препятствует только вертикальному смещению точки ).

Системы, изображенные на рис. 8.7, называются многопролетными шарнирными балками.

Общее число неизвестных опорных реакций при вариантах закрепления бруса, показанных на рис. 6.7, а, б, в, равно трем. Следовательно, эти реакции можно найти при помощи трех уравнений равновесия, которые составляются для плоской системы сил. По значениям же опорных реакций и внешних нагрузок можно определить [по формулам (2.7) - (4.7)] внутренние усилия в любом поперечном сечении бруса. Поэтому брус, закрепленный путем наложения на него трех связей, является не только геометрически неизменяемым, но и статически определимым. Наложение на него большего числа связей делает брус статически неопределимым, так как в этом случае все опорные реакции нельзя определить из одних лишь уравнений равновесия.

Уравнения равновесия, составляемые для определения опорных реакций, можно представить в трех различных вариантах:

1) в виде сумм проекций сил на две произвольные не параллельные друг другу оси и суммы моментов сил относительно любой точки плоскости МО);

2) в виде суммы проекций сил на произвольную ось и двух сумм моментов относительно любых точек плоскости, не лежащих на одном перпендикуляре к указанной оси проекций

3) в виде трех сумм моментов относительно любых точек плоскости, не лежащих на одной прямой

Выбор того или иного варианта составления уравнений равновесия, а также выбор точек и направлений осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не проводить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их значения рекомендуется подставить в какое-либо уравнение равновесия, не использованное ранее.

На многопролетную шарнирную балку, изображенную на рис. 8.7, а, наложено четыре внешние связи (три в сечении А и одна в сечении С), а на балку, изображенную на рис. 8.7, б, - пять внешних связей (две в сечении А и по одной в сечениях В, Е и F).

Однако если на каждый брус, составляющий многопролетную шарнирную балку, наложено по три связи, то эта балка статически определима и опорные реакции можно найти из уравнений статики.

Кроме трех уравнений равновесия всех сил, действующих на многопролетную шарнирную балку, составляются уравнения, выражающие равенство нулю моментов сил, приложенных по одну сторону от каждого шарнира (соединяющего отдельные части балки), относительно центра этого шарнира. Например, для балки, изображенной на рис. 8.7, а, кроме трех уравнений равновесия всех действующих на нее сил, составляется уравнение моментов левых (или правых) сил относительно шарнира , а для балки, изображенной на рис. 8.7,б, - относительно шарниров С и D.

Рассмотрим пример определения опорных реакций простой однопролетной балки, расчетная схема которой изображена на рис. 9.7, а. Отбросим опоры и заменим их влияние на балку опорными реакциями RA, Н и RB (рис. 9.7, б). Обычно балка с отброшенными опорами отдельно не изображается, а обозначения и направления опорных реакций указываются на расчетной схеме балки. Реакции представляют собой вертикальную и горизонтальную составляющие полной реакции шарнирно неподвижной опоры А; сила же является полной реакцией опоры В. Направления опорных реакций выбираются произвольно; если в результате расчета значение какой-либо реакции получается отрицательным, то, значит, в действительности ее направление противоположно предварительно принятому.

Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).

q - интенсивность нагрузки, кн/м

G = q L – равнодействующая распределенной нагрузки

Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:

· Шарнирно-подвижная

Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.

· Шарнирно-неподвижная

Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.

· Жесткая заделка (защемление)

Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.

∑ m А (F к)= 0

Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0

Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.

Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.

∑ F kx = 0 R A х = 0

∑ F k у = 0 R A у – G – P = 0

∑ m А (F к)= 0 - M A + G L / 2 + P L = 0

Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн

M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м

Проверяем полученные значения реакций:

∑ m в (F к)= 0 - M A + R A у L - G L / 2 = 0

9,6 + 1,4 . 8 – 0,4 . 4 = 0

11,2 + 11,2 = 0 реакции найдены верно.

Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.

∑ m А (F к)= 0

∑ m В (F k)= 0

Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0


1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:


Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).

5 семестр. Основы функционирования машин и их элементов в системе промышленного сервиса

Теоретическая механика это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Сила - это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.

Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил

Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).


Решение. 1. Составление расчетной схемы . Объект равновесия – балка АС . Активные силы: F = 3 к H , пара сил с M = 4 к H ∙м = 1 кН/м , которую заменяем одной сосредоточенной силой R q = q 1= 13 = 3 к H ; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции

и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у - вертикально вверх (рис.1,а).

2. Условия равновесия:


.

3. Составление уравнений равновесия:

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .

Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (2): кН .

Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

Подставив в это уравнение значения входящих в него величин, получим:

0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2.Определение реакций опор составной конструкции

Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максималь­ной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геомет­рические размеры указаны в метрах. Определить реакции опор и усилие, пе­редаваемое через шарнир. Вес элемен­тов конструкции не учитывать.

Рис. 1 Рис. 2

Решение .Если рассмотреть рав­новесие всей конструкции в целом, учитывая, что реакция заделки состо­ит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхно­сти, то расчетная схема будет иметь вид, представленный на рис. 2.

Здесь равнодействующая распреде­ленной нагрузки


расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А - неизвестный момент заделки.

В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравне­ний равновесия плоской произвольной системы сил.

Поэтому расчленим систему на отдельные тела по шарниру (рис.3).

Силу, приложенную в шарнире, следует при этом учи­тывать лишь на одном теле (любом из них). Уравнения для тела ВС :



Отсюда Х С = – 1 кН ; У С = 0; R B = 1 кН .

Уравнения для тела АС :

Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разло­жена на составляющие F cos α и F sin α и определена сум­ма их моментов.

Из последней системы уравнений находим:

Х А = – 1,54 кН ; У А = 2 кН ; М А = – 10,8 кНм .

Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):

Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.