Как раскрыть 3 степень. Формулы сокращённого умножения. Применение ФСУ для решения уравнений

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

a⁴ — b⁴ = (a - b)(a + b)(a² + b²).

Все равенства имеют пару (сумма - разность), кроме разности квадратов. Для суммы квадратов формула не приводится .

Остальные равенства легко запоминаются :

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b : это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение :

(a - b)³ = (a - b)(a - b)(a - b) = (a² — ab - ab + b²)(a - b) = a³ — a²b - a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени :

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

(x + 1)³ = 0.

Корень такого уравнения вычисляется устно: x = -1 .

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0 .

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x . После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора :

703² — 203² = (703 + 203)(703 - 203) = 906 ∙ 500 = 453000 .

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m - 1) - 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m - 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m .

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) - (10m² + 6m) .

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 - 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4) :

k³(k² + 4k + 4) = k (k² + 4k + 4) .

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) - k (k² + 4k + 4) = 0 .

Снова необходимо вынести общий множитель:

(k³ — k)(k² + 4k + 4) = 0.

Из первого полученного сомножителя можно вынести k . По формуле краткого умножения второй множитель будет тождественно равен (k + 2)² :

k (k² — 1)(k + 2)² = 0.

Использование формулы разности квадратов:

k (k - 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

  1. k = 0;
  2. k - 1 = 0; k = 1;
  3. k + 1 = 0; k = -1;
  4. (k + 2)² = 0; k = -2.

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

Выражение (a + b ) 2 - это квадрат суммы чисел a и b . По определению степени выражение (a + b a + b )(a + b ). Следовательно, из квадрата суммы мы можем сделать выводы, что

(a + b ) 2 = (a + b )(a + b ) = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 ,

т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

формула квадрата суммы

(a + b ) 2 = a 2 + 2ab + b 2

Многочлен a 2 + 2ab + b 2 называется разложением квадрата суммы.

Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.

Пример. Возвести в квадрат выражение 3x 2 + 2xy .

Решение: чтобы не производить дополнительных преобразований, воспользуемся формулой квадрата суммы. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

(3x 2 + 2xy ) 2 = (3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2

Теперь, пользуясь правилами умножения и возведения в степень одночленов , упростим получившееся выражение:

(3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2 = 9x 4 + 12x 3 y + 4x 2 y 2

Квадрат разности

Выражение (a - b ) 2 - это квадрат разности чисел a и b . Выражение (a - b ) 2 представляет собой произведение двух многочленов (a - b )(a - b ). Следовательно, из квадрата разности мы можем сделать выводы, что

(a - b ) 2 = (a - b )(a - b ) = a 2 - ab - ab + b 2 = a 2 - 2ab + b 2 ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Из правила следует, что общая формула квадрата разности , без промежуточных преобразований, будет выглядеть так:

(a - b ) 2 = a 2 - 2ab + b 2

Многочлен a 2 - 2ab + b 2 называется разложением квадрата разности.

Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.

Пример. Представьте квадрат разности в виде трёхчлена:

(2a 2 - 5ab 2) 2

Решение: используя формулу квадрата разности находим:

(2a 2 - 5ab 2) 2 = (2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2

Теперь преобразуем выражение в многочлен стандартного вида :

(2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2 = 4a 4 - 20a 3 b 2 + 25a 2 b 4

Разность квадратов

Выражение a 2 - b 2 - это разность квадратов чисел a и b . Выражение a 2 - b 2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:

(a + b )(a - b ) = a 2 + ab - ab - b 2 = a 2 - b 2 ,

т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.

Из правила следует, что общая формула разности квадратов выглядит так:

a 2 - b 2 = (a + b )(a - b )

Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно - как сумма двух чисел, а другое - как разность тех же чисел.

Пример. Преобразуйте произведение в двучлен:

(5a 2 + 3)(5a 2 - 3)

Решение:

(5a 2 + 3)(5a 2 - 3) = (5a 2) 2 - 3 2 = 25a 4 - 9

В примере мы применили формулу разности квадратов справа налево, то есть нам дана была правая часть формулы, а мы преобразовали её в левую:

(a + b )(a - b ) = a 2 - b 2

На практике все три рассмотренные формулы применяются и слева направо и справа налево, в зависимости от ситуации.

Алгебра

Формулы сокращенного умножения применяются для преобразования выражений. Тождества используются для представления целого выражения в виде многочлена и разложения многочленов на множители.

  • 1 Квадрат суммы (a + b) 2 = a 2 + 2ab + b 2
  • 2 Квадрат разности (a - b) 2 = a 2 - 2ab + b 2
  • 3 Разность квадратов a 2 - b 2 = (a - b)(a + b)
  • 4 Куб суммы (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 2
  • 5 Куб разности (a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 2
  • 6 Сумма кубов a 3 + b 3 = (a + b)(a 2 - ab + b 2)
  • 7 Разность кубов a 3 - b 3 = (a - b)(a 2 + ab + b 2)

Формулы для квадратов

\((a + b)^2 = a^2 + 2ab + b^2\)

\((a - b)^2 = a^2 - 2ab + b^2\)

\(a^2 - b^2 = (a + b)(a - b)\)

Формулы для кубов

\((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)

\((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)

\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)

Формулы для четвертой степени

\((a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)

\((a - b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4\)

\(a^4 - b^4 = (a - b)(a + b)(a^2 + b^2)\);
следует из \(a^2 - b^2 = (a + b)(a - b)\).

Формулы сокращенного умножения

1. Квадрат суммы

2. Квадрат разности

3. Сумма и разность квадратов

4. Сумма в третьей степени (куб суммы)

5. Разность в третьей степени (куб разности)

6. Сумма и разность кубов

7. Формулы сокращенного умножения для четвертой степени

8. Формулы сокращенного умножения для пятой степени

9. Формулы сокращенного умножения для шестой степени

10. Формулы сокращенного умножения для степени n, где n - любое натуральное число

11. Формулы сокращенного умножения для степени n, где n - четное положительное число

12. Формулы сокращенного умножения для степени n, где n - нечетное положительное число

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Умножение многочлена на многочлен

! Чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить.

Будьте внимательны! У каждого слагаемого есть свой знак.

Формулы сокращённого умножения многочленов - это, как правило, 7 (семь) часто встречающихся случаев умножения многочленов.

Определения и Формулы сокращенного умножения. Таблица

Три формулы сокращенного умножения для квадратов

1. Формула квадрата суммы.

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Чтобы лучше понять формулу, сначала упростим выражение (развернем формулу квадрата суммы)

А теперь разложим на множители (свернем формулу)

Последовательность действий при разложении на множители:

  1. определи, какие одночлены возводились в квадрат (5 и 3m );
  2. проверь, стоит ли в середине формулы их удвоенное произведение (2 5 3m = 30m );
  3. запиши ответ (5 + 3m) 2 .

2. Формула квадрата разности

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Сначала упростим выражение (развернем формулу):

А потом наоборот, разложим на множители (свернем формулу):

3. Формула разности квадратов

Произведение суммы двух выражений на их разность равно разности квадратов этих выражений.

Свернем формулу (выполним умножение)

А теперь развернем формулу (разложим на множители)

Четыре формулы сокращенного умножения для кубов

4. Формула куба суммы двух чисел

Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Последовательность действий при «сворачивании» формулы:

  1. найти одночлены, которые возводились в куб (здесь и 1 );
  2. проверить средние слагаемые на соответствие формуле;
  3. записать ответ.

5. Формула куба разности двух чисел

Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

6. Формула суммы кубов

Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

И обратно:

7. Формула разности кубов

Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

Применение формул сокращенного умножения. Таблица

Пример использования формул на практике (устный счет).

Задача: Найти площадь квадрата со стороной а = 71 см.

Решение: S = a 2 . Используя формулу квадрата суммы, имеем

71 2 = (70 + 1) 2 = 70 2 + 2*70*1 + 1 2 = 4900 + 140 + 1 = 5041 см 2

Ответ: 5041 см 2