Как пересекаются высоты в треугольнике. Все, что нужно знать о треугольнике. Свойства минимальной из высот треугольника

Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

Треугольники.

Основные понятия.

Треугольник - это фигура, состоящая из трех отрезков и трех точек, не лежащих на одной прямой.

Отрезки называются сторонами , а точки - вершинами .

Сумма углов треугольника равна 180 º .

Высота треугольника.

Высота треугольника - это перпендикуляр, проведенный из вершины к противолежащей стороне.

В остроугольном треугольнике высота содержится внутри треугольника (рис.1).

В прямоугольном треугольнике катеты являются высотами треугольника (рис.2).

В тупоугольном треугольнике высота проходит вне треугольника (рис.3).

Свойства высоты треугольника:

Биссектриса треугольника.

Биссектриса треугольника - это отрезок, который делит угол вершины пополам и соединяет вершину с точкой на противолежащей стороне (рис.5).

Свойства биссектрисы:


Медиана треугольника.

Медиана треугольника - это отрезок, соединяющий вершину с серединой противолежащей стороны (рис.9а).


Длину медианы можно вычислить по формуле:

2b 2 + 2c 2 - a 2
m a 2 = ——————
4

где m a - медиана, проведенная к стороне а .

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы:

c
m c = —
2

где m c - медиана, проведенная к гипотенузе c (рис.9в)

Медианы треугольника пересекаются в одной точке (в центре масс треугольника) и делятся этой точкой в соотношении 2:1, отсчитывая от вершины. То есть отрезок от вершины к центру в два раза больше отрезка от центра к стороне треугольника (рис.9с).

Три медианы треугольника делят его на шесть равновеликих треугольников.

Средняя линия треугольника.

Средняя линия треугольника - это отрезок, соединяющий середины двух его сторон (рис.10).

Средняя линия треугольника параллельна третьей стороне и равна ее половине

Внешний угол треугольника.

Внешний угол треугольника равен сумме двух несмежных внутренних углов (рис.11).

Внешний угол треугольника больше любого несмежного угла.

Прямоугольный треугольник.

Прямоугольный треугольник - это треугольник, у которого есть прямой угол (рис.12).

Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой .

Две другие стороны называются катетами .


Пропорциональные отрезки в прямоугольном треугольнике.

1) В прямоугольном треугольнике высота, проведенная из прямого угла, образует три подобных треугольника: ABC, ACH и HCB (рис.14а). Соответственно, углы, образуемые высотой, равны углам А и В.

Рис.14а

Равнобедренный треугольник.

Равнобедренный треугольник - это треугольник, у которого две стороны равны (рис.13).

Эти равные стороны называются боковыми сторонами , а третья - основанием треугольника.

В равнобедренном треугольнике углы при основании равны. (В нашем треугольнике угол А равен углу C).

В равнобедренном треугольнике медиана, проведенная к основанию, является одновременно и биссектрисой, и высотой треугольника.

Равносторонний треугольник.

Равносторонний треугольник - это треугольник, у которого все стороны равны (рис.14).

Свойства равностороннего треугольника:

Замечательные свойства треугольников.

У треугольников есть оригинальные свойства, которые помогут вам успешно решать задачи, связанные с этими фигурами. Некоторые из этих свойств изложены выше. Но повторяем их еще раз, добавив к ним несколько других замечательных особенностей:

1) В прямоугольном треугольнике с углами 90º, 30º и 60º катет b , лежащий напротив угла в 30º, равен половине гипотенузы. А катет a больше катета b в √3 раз (рис.15а ). К примеру, если катет b равен 5, то гипотенуза c обязательно равна 10, а катет а равен 5√3.

2) В прямоугольном равнобедренном треугольнике с углами 90º, 45º и 45º гипотенуза в √2 раз больше катета (рис.15b ). К примеру, если катеты равны 5, то гипотенуза равна 5√2.

3) Средняя линия треугольника равна половине параллельной стороны (рис.15с ). К примеру, если сторона треугольника равна 10, то параллельная ей средняя линия равна 5.

4) В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы (рис.9в): m c = с/2.

5) Медианы треугольника, пересекаясь в одной точке, делятся этой точкой в соотношении 2:1. То есть отрезок от вершины к точке пересечения медиан в два раза больше отрезка от точки пересечения медиан к стороне треугольника (рис.9c)

6) В прямоугольном треугольнике середина гипотенузы является центром описанной окружности (рис.15d ).


Признаки равенства треугольников .

Первый признак равенства : если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства : если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства : если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Неравенство треугольника.

В любом треугольнике каждая сторона меньше суммы двух других сторон.

Теорема Пифагора.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

c 2 = a 2 + b 2 .

Площадь треугольника.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

ah
S = ——
2

2) Площадь треугольника равна половине произведения двух любых его сторон на синус угла между ними:

1
S = — AB · AC · sin A
2

Треугольник, описанный около окружности.

Окружность называется вписанной в треугольник, если она касается всех его сторон (рис.16а ).


Треугольник, вписанный в окружность.

Треугольник называется вписанным в окружность, если он касается ее всеми вершинами (рис.17a ).

Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника (рис.18).

Синус острого угла x противолежащего катета к гипотенузе.
Обозначается так: sin x .

Косинус острого угла x прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.
Обозначается так: cos x .

Тангенс острого угла x - это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg x .

Котангенс острого угла x - это отношение прилежащего катета к противолежащему.
Обозначается так: ctg x .

Правила:

Катет, противолежащий углу x , равен произведению гипотенузы на sin x :

b = c · sin x

Катет, прилежащий к углу x , равен произведению гипотенузы на cos x :

a = c · cos x

Катет, противоположный углу x , равен произведению второго катета на tg x :

b = a · tg x

Катет, прилежащий к углу x , равен произведению второго катета на ctg x :

a = b · ctg x .


Для любого острого угла x :

sin (90° - x ) = cos x

cos (90° - x ) = sin x


Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Рис. 1. Высота тупоугольного треугольника.

Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано : равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Рис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основания:

  • Высота совпадает с медианной и биссектрисой
  • Делит основание на две равные части.

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.

Найдем высоту по теореме Пифагора: $$ВD=\sqrt{BC^2-HC^2}=\sqrt{25-16}=3$$

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Формула площади треугольника: $$S={1\over2}*bh$$, где b – это сторона треугольника,а h – высота, проведенная к этой стороне. Выразим из формулы высоту:

$$h=2*{S\over b}$$

Если площадь равна 15, сторона 5, то высота $$h=2*{15\over5}=6$$

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Рис. 3. Рисунок к задаче.

Угол ВСН=300 , а сторона BC=8. У нас все тот же прямоугольный треугольник BCH. Воспользуемся синусом. Синус это отношение противолежащего катета к гипотенузе, значит: BH/BC=cos BCH.

Угол известен, как и сторона. Выразим высоту треугольника:

$$BH=BC*\cos (60\unicode{xb0})=8*{1\over2}=4$$

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 137.

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

  1. По заданным параметрам выполняем построение треугольника.
  2. Введем обозначения. А, В и С будут вершинами фигуры. Углы, соответствующие каждой вершине - α, β, γ. Противолежащие этим углам стороны - a, b, c.
  3. Высотой называется перпендикуляр, опущенный из вершины угла к противоположной стороне треугольника. Для нахождения высот треугольника проводим построение перпендикуляров: из вершины угла α к стороне a, из вершины угла β к стороне b и так далее.
  4. Точку пересечения высоты и стороны a обозначим H1, а саму высоту h1. Точка пересечения высоты и стороны b будет H2, высота соответственно h2. Для стороны c высота будет h3, а точка пересечения H3.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Пусть в нашем треугольнике углы α и β будут острыми, а угол γ - тупой. Тогда для построения высот, выходящих из углов α и β, надо продолжить противоположные им стороны треугольника, чтобы провести перпендикуляры.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h1. Для эта высота будет одновременно биссектрисой и медианой.

Для основания можно сделать только одно построение. Например, провести медиану - отрезок, соединяющий вершину равнобедренного треугольника и противоположную сторону, основание, для нахождения высоты и биссектрисы. А для вычисления длины высоты для двух других сторон можно построить только одну высоту. Таким образом, чтобы графически определить, как вычислить высоту равнобедренного треугольника, достаточно найти две высоты из трех.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы треугольника в данном случае, требуется только одно построение.