Деление в столбик с остатком. Деление столбиком. Калькулятор деления столбиком

>> Урок 32. Формула деления с остатком

1. Какие остатки могут получиться при делении на 3, на 5, на 12, на 99, на х?

2. Найди по рисунку делимое, делитель, частное и остаток. Запиши соответствующее числовое равенство .


3. Проверь равенства и назови делимое а, делитель b, частное c и остаток r. Сделай чертёж.

Что общего в этих равенствах? Какие значения может принимать в них остаток?

4 . Запиши формулу зависимости между делимым а, делителем b, частным c и остатком r при делении с остатком. Сравни в этой формуле значения остатка r и делителя b.

По горизонтали:

2. Знак математического действия. 4. Запись из одной или нескольких цифр. 5. Часть прямой, соединяющая две точки. 6, Геометрическая фигура, не имеющая размеров. 8. Математическое действие. 9. Однозначное число.

По вертикали:

1. Часть прямой. 2. Запись алгоритма действий, понятная исполнителю. 3. Математическое действие. 6. Число разрядов в классе. 7. Упражнения, выполняемые с помощью рассуждений и вычислений.

15*. Найди все способы размена 10 руб. монетами в 1 руб., 2 руб. и 5 руб.

16*. Половина трети числа равна 5. Какое это число?

Петерсон Людмила Георгиевна. Математика. 3 класс. Часть 2. - М.: Издательство "Ювента", 2005, - 64 с.: ил.

Помощь школьнику онлайн , Математика для 3 класса скачать , календарно-тематическое планирование

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком .

Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:

За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:

Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:

Под делимым будут записываться промежуточные вычисления:

Полностью форма записи деления столбиком выглядит следующим образом:

Как делить столбиком

Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:

В нашем случае число 78 будет неполным делимым , неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра - 0, это значит, что частное будет состоять из 2 цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше.

К получившемуся остатку - 6, сносим следующую цифру делимого - 0. В результате, получилось неполное делимое - 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное - оно записано под делителем:

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.

Определяем неполное делимое - это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого - 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0: 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого - 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.

Определяем неполное делимое - это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого - 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:

Сносим следующую цифру делимого - 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток - 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:

Деление столбиком с остатком

Пусть нам требуется разделить 1340 на 23.

Определяем неполное делимое - это число 134. Записываем в частное 5 и из 134 вычитаем 115. В остатке получилось 19:

Сносим следующую цифру делимого - 0. Определяем, сколько раз 23 содержится в числе 190. Получаем число 8, записываем его в частное, а из 190 вычитаем 184. Получаем остаток 6:

Так как в делимом больше не осталось цифр, деление закончилось. В результате получилось неполное частное 58 и остаток 6:

1340: 23 = 58 (остаток 6)

Осталось рассмотреть пример деления с остатком, когда делимое меньше делителя. Пусть нам требуется разделить 3 на 10. Мы видим, что 10 ни разу не содержится в числе 3, поэтому записываем в частное 0 и из 3 вычитаем 0 (10 · 0 = 0). Проводим горизонтальную черту и записываем остаток - 3:

3: 10 = 0 (остаток 3)

Калькулятор деления столбиком

Данный калькулятор поможет вам выполнить деление столбиком. Просто введите делимое и делитель и нажмите кнопку Вычислить.

Научить ребенка делению столбиком просто. Необходимо объяснить алгоритм этого действия и закрепить пройденный материал.

  • Согласно школьной программе, деление столбиком детям начинают объяснять уже в третьем классе. Ученики, которые схватывают все «на лету», быстро понимают эту тему
  • Но, если ребенок заболел и пропустил уроки математики, или он не понял тему, тогда родители должны самостоятельно малышу объяснить материал. Нужно максимально доступно донести до него информацию
  • Мамы и папы во время учебного процесса ребенка должны быть терпеливыми, проявляя такт по отношению к своему чаду. Ни в коем случае нельзя кричать на ребенка, если у него что-то не получается, ведь так можно отбить у него всю охоту к занятиям



Важно: Чтобы ребенок понял деление чисел, он должен досконально знать таблицу умножения. Если малыш плохо знает умножение, он не поймет деление.

Во время домашних дополнительных занятий можно пользоваться шпаргалками, но ребенок должен выучить таблицу умножения, прежде чем, приступать к теме «Деление».

Итак, как объяснить ребенку деление столбиком :

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные



Деление всегда дается детям немного сложнее, чем умножение. Но усердные дополнительные занятия дома помогут малышу понять алгоритм этого действия и не отставать от сверстников в школе.

Начинайте с простого — деление на однозначное число:

Важно: Просчитайте в уме, чтобы деление получилось без остатка, иначе ребенок может запутаться.

Например, 256 разделить на 4:

  • Начертите на листе бумаги вертикальную линию и разделите ее с правой части пополам. Слева напишите первую цифру, а справа над чертой вторую
  • Спросите у малыша, сколько четверок помещается в двойке — нисколько
  • Тогда берем 25. Для наглядности отделите это число сверху уголком. Опять спросите у ребенка, сколько помещается четверок в двадцати пяти? Правильно — шесть. Пишем цифру «6» в правом нижнем углу под линией. Ребенок должен использовать таблицу умножения для правильного ответа
  • Запишите под 25 цифру 24, и подчеркните, чтобы записать ответ — 1
  • Опять спрашивайте: в единице сколько помещается четверок — нисколько. Тогда сносим к единице цифру «6»
  • Получилось 16 — сколько четверок помещается в этом числе? Правильно — 4. Записываем «4» рядом с «6» в ответе
  • Под 16 записываем 16, подчеркиваем и получается «0», значит мы разделили правильно и ответ получился «64»

Письменное деление на двузначное число



Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно



Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

Например:

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.



Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375



Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).



Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Статья разбирает понятие деления целых чисел с остатком. Докажем теорему о делимости целых чисел с остатком и просмотрим связи между делимыми и делителями, неполными частными и остатками. Рассмотрим правила, когда производится деление целых чисел с остатками, рассмотрев подробно на примерах. В конце решения выполним проверку.

Общее представление о делении целых чисел с остатками

Деление целых чисел с остатком рассматривается как обобщенное деление с остатком натуральных чисел. Это выполняется потому, что натуральные числа – это составная часть целых.

Деление с остатком произвольного числа говорит о том, что целое число a делится на число b , отличное от нуля. Если b = 0 , тогда не производят деление с остатком.

Также как и деление натуральных чисел с остатком, производится деление целых чисел a и b , при b отличном от нуля, на c и d . В этом случае a и b называют делимым и делителем, а d – остатком деления, с – целое число или неполное частное.

Если считать, что остаток – это целое неотрицательное число, тогда его величина не больше модуля числа b . Запишем таким образом: 0 ≤ d ≤ b . Данная цепочка неравенств используется при сравнении 3 и более количества чисел.

Если с – неполное частное, тогда d – остаток от деления целого числа a на b , кратко можно зафиксировать: a: b = c (ост. d).

Остаток при делении чисел a на b возможен нулевой, тогда говорят, что a делится на b нацело, то есть без остатка. Деление без остатка считается частным случаем деления.

Если делим ноль на некоторое число, получаем в результате ноль. Остаток деления также будет равен нулю. Это можно проследить из теории о делении нуля на целое число.

Теперь рассмотрим смысл деления целых чисел с остатком.

Известно, что целые положительные числа – натуральные, тогда при делении с остатком получится такой же смысл, как и при делении натуральных чисел с остатком.

При делении целого отрицательного числа а на целое положительное b имеется смысл. Рассмотрим на примере. Представив ситуацию, когда имеем долг предметов в количестве a , которое необходимо погасить b человек. Для этого необходимо каждому внести одинаковый вклад. Чтобы определить величину долга для каждого, необходимо обратить внимание на величину частного с. Остаток d говорит о том, что известно количество предметов после расплаты с долгами.

Рассмотрим на примере с яблоками. Если 2 человека должны 7 яблок. В случае, если посчитать, что каждый должен вернуть по 4 яблока, после полного расчета у них останется 1 яблоко. Запишем в виде равенства это: (− 7) : 2 = − 4 (о с т. 1) .

Деление любого числа а на целое не имеет смысла, но возможно как вариант.

Теорема о делимости целых чисел с остатком

Мы выявили, что а – это делимое, тогда b – это делитель, с – неполное частное, а d – остаток. Они между собой связаны. Эту связь покажем при помощи равенства a = b · c + d . Связь между ними характеризуется теоремой делимости с остатком.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом: a = b · q + r , где q и r – это некоторые целые числа. Тут имеем 0 ≤ r ≤ b .

Докажем возможность существования a = b · q + r .

Доказательство

Если существуют два числа a и b , причем a делится на b без остатка, тогда из определения следует, что имеется число q , что будет верно равенство a = b · q . Тогда равенство можно считать верным: a = b · q + r при r = 0 .

Тогда необходимо взять q такое, чтобы данное неравенством b · q < a < b · (q + 1) было верным. Необходимо вычесть b · q из всех частей выражения. Тогда придем к неравенству такого вида: 0 < a − b · q < b .

Имеем, что значение выражения a − b · q больше нуля и не больше значения числа b, отсюда следует, что r = a − b · q . Получим, что число а можем представить в виде a = b · q + r .

Теперь необходимо рассмотреть возможность представления a = b · q + r для отрицательных значений b .

Модуль числа получается положительным, тогда получим a = b · q 1 + r , где значение q 1 – некоторое целое число, r – целое число, которое подходит условию 0 ≤ r < b . Принимаем q = − q 1 , получим, что a = b · q + r для отрицательных b .

Доказательство единственности

Допустим, что a = b · q + r , q и r являются целыми числами с верным условием 0 ≤ r < b , имеется еще одна форма записи в виде a = b · q 1 + r 1 , где q 1 и r 1 являются некоторыми числами, где q 1 ≠ q , 0 ≤ r 1 < b .

Когда из левой и правых частей вычитается неравенство, тогда получаем 0 = b · (q − q 1) + r − r 1 , которое равносильно r - r 1 = b · q 1 - q . Так как используется модуль, получим равенство r - r 1 = b · q 1 - q .

Заданное условие говорит о том, что 0 ≤ r < b и 0 ≤ r 1 < b запишется в виде r - r 1 < b . Имеем, что q и q 1 – целые, причем q ≠ q 1 , тогда q 1 - q ≥ 1 . Отсюда имеем, что b · q 1 - q ≥ b . Полученные неравенства r - r 1 < b и b · q 1 - q ≥ b указывают на то, что такое равенство в виде r - r 1 = b · q 1 - q невозможно в данном случае.

Отсюда следует, что по-другому число a быть представлено не может, кроме как такой записью a = b · q + r .

Связь между делимым, делителем, неполным частным и остатком

При помощи равенства a = b · c + d можно находить неизвестное делимое a , когда известен делитель b с неполным частным c и остатком d .

Пример 1

Определить делимое, если при деление получим - 21 , неполное частное 5 и остаток 12 .

Решение

Необходимо вычислить делимое a при известном делителе b = − 21 , неполным частным с = 5 и остатком d = 12 . Нужно обратиться к равенству a = b · c + d , отсюда получим a = (− 21) · 5 + 12 . При соблюдении порядка выполнения действий умножим - 21 на 5 , после этого получаем (− 21) · 5 + 12 = − 105 + 12 = − 93 .

Ответ: - 93 .

Связь между делителем и неполным частным и остатком можно выразить при помощи равенств: b = (a − d) : c , c = (a − d) : b и d = a − b · c . С их помощью мы можем вычислить делитель, неполное частное и остаток. Это сводится к постоянному нахождению остатка от деления целого целых чисел a на b с известным делимым, делителем и неполным частным. Применяется формула d = a − b · c . Рассмотрим решение подробно.

Пример 2

Найти остаток от деления целого числа - 19 на целое 3 при известном неполном частном равном - 7 .

Решение

Чтобы вычислить остаток от деления, применим формулу вида d = a − b · c . По условию имеются все данные a = − 19 , b = 3 , c = − 7 . Отсюда получим d = a − b · c = − 19 − 3 · (− 7) = − 19 − (− 21) = − 19 + 21 = 2 (разность − 19 − (− 21) . Данный пример вычислен по правилу вычитания целого отрицательного числа.

Ответ: 2 .

Все целые положительные числа являются натуральными. Отсюда следует, что деление выполняется по всем правилам деления с остатком натуральных чисел. Скорость выполнения деления с остатком натуральных чисел важна, так как на нем основано не только деление положительных, но и правила деления целых произвольных.

Самый удобный метод деления – это столбик, так как проще и быстрее получить неполное или просто частное с остатком. Рассмотрим решение более подробно.

Пример 3

Произвести деление 14671 на 54 .

Решение

Данное деление необходимо выполнять столбиком:

То есть неполное частное получается равным 271 , а остаток – 37 .

Ответ: 14 671: 54 = 271 . (ост. 37)

Правило деления с остатком целого положительного числа на целое отрицательное, примеры

Чтобы выполнить деление с остатком положительного числа на целое отрицательное, необходимо сформулировать правило.

Определение 1

Неполное частное от деления целого положительного a на целое отрицательное b получаем число, которое противоположно неполному частному от деления модулей чисел a на b . Тогда остаток равен остатку при делении a на b .

Отсюда имеем, что неполное частное от деления целого полодительного числа на целое отрицательное число считают целым неположительным числом.

Получим алгоритм:

  • делить модуль делимого на модуль делителя, тогда получим неполное частное и
  • остаток;
  • запишем число противоположное полученному.

Рассмотрим на примере алгоритма деления целого положительного числа на целое отрицательное.

Пример 4

Выполнить деление с остатком 17 на - 5 .

Решение

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное. Необходимо разделить 17 на - 5 по модулю. Отсюда получим, что неполное частное равно 3 , а остаток равен 2 .

Получим, что искомое число от деления 17 на - 5 = - 3 с остатком равным 2 .

Ответ: 17: (− 5) = − 3 (ост. 2).

Пример 5

Необходимо разделить 45 на - 15 .

Решение

Необходимо разделить числа по модулю. Число 45 делим на 15 , получим частное 3 без остатка. Значит, число 45 делится на 15 без остатка. В ответе получаем - 3 , так как деление производилось по модулю.

45: (- 15) = 45: - 15 = - 45: 15 = - 3

Ответ: 45: (− 15) = − 3 .

Формулировка правила деления с остатком выглядит следующим образом.

Определение 2

Для того, чтобы получить неполное частное с при делении целого отрицательного   a на положительное b , нужно применить противоположное данному числу и вычесть из него 1 , тогда остаток d будет вычисляться по формуле: d = a − b · c .

Исходя из правила можно сделать вывод, что при делении получим целое неотрицательное число. Для точности решения применяют алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • делить по модулю;
  • записать противоположное данному число и вычесть 1 ;
  • использовать формулу для остатка d = a − b · c .

Рассмотрим на примере решения, где применяется данный алгоритм.

Пример 6

Найти неполное частное и остаток от деления - 17 на 5 .

Решение

Делим заданные числа по модулю. Получаем, что при делении частное равно 3 , а остаток 2 . Так как получили 3 , противоположное - 3 . Необходимо отнять 1 .

− 3 − 1 = − 4 .

Искомое значение полчаем равное - 4 .

Чтобы вычислить остаток, необходимо a = − 17 , b = 5 , c = − 4 , тогда d = a − b · c = − 17 − 5 · (− 4) = − 17 − (− 20) = − 17 + 20 = 3 .

Значит, неполным частным от деления является число - 4 с остатком равным 3 .

Ответ: (− 17) : 5 = − 4 (ост. 3).

Пример 7

Разделить целое отрицательное число - 1404 на положительное 26 .

Решение

Необходимо произвести деление столбиком и по мудулю.

Мы получили деление модулей чисел без остатка. Это значит, что деление выполняется без остатка, а искомое частное = - 54 .

Ответ: (− 1 404) : 26 = − 54 .

Правило деления с остатком целых отрицательных чисел, примеры

Необходимо сформулировать правило деления с остатком целых отрицательных чисел.

Определение 3

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b , необходимо произвести вычисления по модулю, после чего прибавить 1 , тогда сможем произвести вычисления по формуле d = a − b · c .

Отсюда следует, что неполное частное от деления целых отрицательных чисел будет число положительное.

Сформулируем данное правило в виде алгоритма:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя с получением неполного частного с
  • остатком;
  • прибавление 1 к неполному частному;
  • вычисление остатка, исходя из формулы d = a − b · c .

Данный алгоритм рассмотрим на примере.

Пример 8

Найти неполное частное и остаток при делении - 17 на - 5 .

Решение

Для правильности решения применим алгоритм для деления с остатком. Для начала раздели числа по модулю. Отсюда получим, что неполное частное = 3 , а остаток равен 2 . По правилу необходимо сложить неполное частное и 1 . Получим, что 3 + 1 = 4 . Отсюда получим, что неполное частное от деления заданных чисел равно 4 .

Для вычисления остатка мы применим формулу. По условию имеем, что a = − 17 , b = − 5 , c = 4 , тогда, используя формулу, получим d = a − b · c = − 17 − (− 5) · 4 = − 17 − (− 20) = − 17 + 20 = 3 . Искомый ответ, то есть остаток, равен 3 , а неполное частное равно 4 .

Ответ: (− 17) : (− 5) = 4 (ост. 3).

Проверка результата деления целых чисел с остатком

После выполнение деления чисел с остатком необходимо выполнять проверку. Данная проверка подразумевает 2 этапа. Вначале идет проверка остатка d на неотрицательность, выполнение условия 0 ≤ d < b . При их выполнении разрешено выполнять 2 этап. Если 1 этап не выполнился, значит вычисления произведены с ошибками. Второй этап состоит из того, что равенство a = b · c + d должно быть верным. Иначе в вычисления имеется ошибка.

Рассмотрим на примерах.

Пример 9

Произведено деление - 521 на - 12 . Частное равно 44 , остаток 7 . Выполнить проверку.

Решение

Так как остаток – это число положительное, то его величина является меньше, чем модуль делителя. Делитель равен - 12 , значит, его модуль равен 12 . Можно переходить к следующему пункту проверки.

По условию имеем, что a = − 521 , b = − 12 , c = 44 , d = 7 . Отсюда вычислим b · c + d , где b · c + d = − 12 · 44 + 7 = − 528 + 7 = − 521 . Отсюда следует, что равенство верное. Проверка пройдена.

Пример 10

Выполнить проверку деления (− 17) : 5 = − 3 (ост. − 2). Верно ли равенство?

Решение

Смысл первого этапа заключается в том, что необходимо проверить деление целых чисел с остатком. Отсюда видно, что действие произведено неверно, так как дан остаток, равный - 2 . Остаток не является отрицательным числом.

Имеем, что второе условие выполненное, но недостаточное для данного случая.

Ответ: нет.

Пример 11

Число - 19 разделили на - 3 . Неполное частное равно 7 , а остаток 1 . Проверить, верно ли выполнено данное вычисление.

Решение

Дан остаток, равный 1 . Он положительный. По величине меньше модуля делителя, значит, первый этап выполняется. Перейдем ко второму этапу.

Вычислим значение выражения b · c + d . По условию имеем, что b = − 3 , c = 7 , d = 1 , значит, подставив числовые значения, получим b · c + d = − 3 · 7 + 1 = − 21 + 1 = − 20 . Следует, что a = b · c + d равенство не выполняется, так как в условии дано а = - 19 .

Отсюда следует вывод, что деление произведено с ошибкой.

Ответ: нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter